Cho tam giác ABC vuông tại A có BC = 12cm. Tính chiều dài hai cạnh góc vuông AB à AC (biết AB=2/3AC )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-2x+1-2x^2-4x-2=8+6x^2+12x+x^3-4+2x\)
\(\Leftrightarrow-x^2-6x-1=4+6x^2+14x+x^3\)
\(\Leftrightarrow0=5+7x^2+20x+x^3\)
tự giải nốt nha
2 = 6 ; 3 = 12 ; 4 = 20; 5 = 30 ; 6 = 42. Vậy quy luật của nó là hai số tự nhiên liên tiếp nhân lại với nhau.
Vậy 9 = 90
m=2AO;n=2BO>>>m^2=4AO^2;n^2=4BO^2
Áp dụng hệ thức lượng trong tam giác vuông>>>1/AO^2+1/Bo^2=1/h^2
>>>1/4AO^2+1/4BO^2=1/4h^2>>>1/m^2+1/n^2=1/4h^2
Đề là \(P=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{1-a^2}-1+a}\)
\(P=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{1-a^2}-1+a}\)
\(=\frac{1+\sqrt{a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{\left(1-a\right)\left(1+a\right)}-\left(1-a\right)}\)
\(=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\)
\(=\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}-\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\)
\(=\frac{\sqrt{1+a}-\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\)
\(=1\)
các số nguyên tố có tận cùng là 1,3,7,9
vì P có mũ 20 nên có tận cùng bằng 01
nên p20-1 chia hết 100
Phải có là dây CD khác dây AB chứ bạn:
M là TĐ AB thì OM vuông góc với AB,ta giả sử M là trung điểm CD thì OM vuông góc với CD
>>>CD cắt AB hoặc CD//AB.
Mà CD cắt AB và CD không trùng với AB,suy ra OMC và OMC khác OMA=90 độ,
>>>M không là trung điểm CD(đpcm)
Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)