K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(\sqrt{15}+\sqrt{10}\) và \(\sqrt{6}+5\)

 \(\left(\sqrt{15}+\sqrt{10}\right)^2\) và \(\left(\sqrt{6}+5\right)^2\)

      Ta có:\(\left(\sqrt{15}+\sqrt{10}\right)^2=25+2\sqrt{150}\)

                                                     \(=25+10\sqrt{6}\)

                  \(\left(\sqrt{6}+5\right)^2=31+10\sqrt{6}\)

                                Vì 25 < 31

 \(\Rightarrow\left(\sqrt{15}+\sqrt{10}\right)< \left(\sqrt{6}+5\right)\)

đề sai cmnr

13 tháng 12 2018

Sai rồi chắc chắn luôn vì:

nếu a,b>0 thì a+b\(\ge\)2,

mà đề lại cho a+b=1.

Nên đề đúng có thể là: cho a,b\(\ne\)0 và a+b=1 tìm GTTĐ của ....(phần sau chắc đúng rồi)

6 tháng 8 2017

NHỚ K MK NHA!!!

6 tháng 8 2017

a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5

Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).

b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40

Dấu= xảy ra khi y=10.

c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1

Dấu= xảy ra khi x=0

phương trình \(\Leftrightarrow2x^2\left(x+1003\right)^2+\left(\sqrt{2x+2007}-1\right)^2=0\)

6 tháng 8 2017

x^4+2006^x^3+1006009x^2=-x+\(\sqrt{2x+2007}\)-1004

x^2(x+1003)^2=-x+2\(\sqrt{2x+2007}\)-1004

2x^2(x+1003)^2=-2x-2007+2\(\sqrt{2x+2007}\)-1 rồi tách hđt 1 vế âm 1 vế dương

6 tháng 8 2017

\(A=\sqrt{14-\sqrt{160}}-\sqrt{19+6\sqrt{90}}\)

\(A=\sqrt{14-4\sqrt{10}}-\sqrt{19+18\sqrt{10}}\)

\(A=\sqrt{\left(\sqrt{10}\right)^2-2.2\sqrt{10}+4}-\sqrt{\left(\sqrt{10}\right)^2+2.9\sqrt{10}+9}\)

\(A=\sqrt{10}-2-\sqrt{\left(\sqrt{10}\right)^2+2.9\sqrt{10}+9}\)

          Kiểm tra lại cái thứ 2