cho tam giác ABC cân ở A có BD và CE là 2 đường trung tuyến.Chứng minh rằng :BCDE là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(OA=AB=BC\left(gt\right)\Rightarrow CA=\frac{2}{3}CO\)
Tam giác MHC có: CO là đường trung tuyến và \(A\in CO,CA=\frac{2}{3}CO\left(cmt\right)\)
\(\Rightarrow A\) là trọng tâm của \(\Delta MHC\) nên đường trung tuyến HI đi qua điểm A.
b, BI là đường trung bình của \(\Delta AMC\left(gt\right)\Rightarrow BI//AM\)
AM là đường trung bình của \(\Delta OBN\left(gt\right)\Rightarrow AM//BN\)
Qua điểm B nằm ngoài đường thẳng AM, ta có: \(BI//AM,BN//AM\left(cmt\right)\) nên theo tiên đề Ơclít,
3 điểm B,N,I thẳng hàng.
Chúc bạn học tốt.
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)