Cho hình thang ABCD( AD // BC ). Một điểm M di động trên đường chéo AC. Chứng minh : MB.AC \(\le\)MC.AB + MA.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
Ta có:
\(U_{n+2}=\alpha\lambda_1^{n+2}+\beta\lambda_2^{n+2}=\alpha\lambda_1^{n+1}.\lambda_1+\beta\lambda_2^{n+1}.\lambda_2\)
\(\Leftrightarrow U_{n+2}=\left(\alpha\lambda_1^{n+1}+\beta\lambda_2^{n+1}\right)\left(\lambda_1+\lambda_2\right)-\alpha\lambda_1^{n+1}.\lambda_2+\beta\lambda_2^{n+1}.\lambda_1\)
\(\Leftrightarrow U_{n+2}=\left(a\lambda_1^{n+1}+\beta\lambda_2^{n+1}\right)\left(\lambda_1+\lambda_2\right)-\lambda_1\lambda_2.\left(\alpha\lambda_1^n+\beta\lambda_2^n\right)\)
\(\Leftrightarrow U_{n+2}=U_{n+1}.\left(\lambda_1+\lambda_2\right)-U_n.\lambda_1\lambda_2\)
Ta lại có \(\lambda_1,\lambda_2\) là nghiệm của phương trình đặc trưng \(a\lambda^2+b\lambda+c=0\)
\(\Rightarrow U_{n+2}=U_{n+1}.\left(\lambda_1+\lambda_2\right)-U_n.\lambda_1\lambda_2=U_{n+1}.\frac{-b}{a}-U_n.\frac{c}{a}\)
\(\Leftrightarrow aU_{n+2}+bU_{n+1}+cU_n=0\left(dpcm\right)\)
Cách 2 là ;0,(9).10=9,99999
>>>>0,(9).9=9,99999..-0,999999..=9>>>0,(9)=1