\(-\frac{5}{3}-\frac{1}{2}=\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(5x^3+10x^2y+5xy^2\)
= \(5x\left(x^2+2xy+y^2\right)\)
= \(5x\left(x+y\right)^2\)
\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}\)
\(=\frac{-5}{7}\)
a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.
Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)
Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)
( \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)
Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).
b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)
Không mất tính tổng quát, ta giả sử:
b) Làm tiếp : Giả sử a1=a2.
Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)
\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)
Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)
( \(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài
Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2
Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).
a) Hình tự vẽ dễ dàng.
Ta có : \(\widehat{E}=\widehat{EGH}=60^o\)mà hai góc này nằm ở vị trí so le trong => GH//Dx ( điều phải chứng minh ).
b) Ta có : \(\widehat{GDF}\&\widehat{D}\)là hai góc nằm ở vị trí kề bù
\(\Rightarrow\widehat{GDF}+\widehat{D}=180^o\Leftrightarrow\widehat{GDF}=180^o-\widehat{D}=180^o-60^o=120^o\)
Vì Dx là tia phân giác góc GDF nên : \(\widehat{GDx}=\widehat{FDx}=\frac{\widehat{GDF}}{2}=\frac{120^o}{2}=60^o\)( 1 )
Áp dụng tính chất tổng ba góc trong 1 tam giác : \(\widehat{E}+\widehat{D}+\widehat{F}=180^o\Leftrightarrow\widehat{F}=180^o-\widehat{E}-\widehat{D}=180^o-60^o-60^o=60^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{FDx}=\widehat{F}=60^o\)mà hai góc này nằm ở vị trí so le trong => Dx//EF ( điều phải chứng minh ).
\(3^3=27\equiv1\left(mod13\right)\Rightarrow\left(3^3\right)^{670}\equiv1^{670}\equiv1\left(mod13\right)\)
\(\equiv5^2=25\equiv-1\left(mod13\right)\Rightarrow\left(5^2\right)^{1005}\equiv\left(-1\right)^{1005}\left(mod13\right)\)
\(\Rightarrow3^{2010}+5^{2010}\equiv\left(-1\right)+1\equiv0\left(mod13\right)\Rightarrowđpcm\)
\(\left|2x+3\right|+2x=-4\)
\(\Leftrightarrow\left|2x+3\right|=-4-2x\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=4+2x\\2x+3=-4-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0=1\left(ktm\right)\\4x=-7\Rightarrow x=\frac{-7}{4}\left(tm\right)\end{cases}}\)
Vậy \(x=\frac{-7}{4}\)
\(AC\perp Ox;DE\perp Ox\Rightarrow AC//DE\)
\(DB\perp Oy;FC\perp Oy\Rightarrow DB//FC\)
=> Các cặp góc có cạnh tương ứng song song là:
\(\left(\widehat{BDF};\widehat{DFC}\right);\left(\widehat{DBC};\widehat{BCF}\right);\left(\widehat{CAD};\widehat{ADE}\right);\left(\widehat{ACE};\widehat{CED}\right)\)
Đặt \(A=|x+32|+|x-54|\)
\(=|x+32|+|54-x|\ge|x+32+54-x|\)
Hay \(A\ge|86|\)
\(A\ge86\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+32\right).\left(54-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+32\ge0\\54-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+32< 0\\54-x< 0\end{cases}}\) ( xin lỗi nha vì OLM ko ghi đc kí hiệu " hoặc" nên mình ghi chữ )
\(\Leftrightarrow\hept{\begin{cases}x\ge-32\\x\le54\end{cases}}\)hoặc \(\hept{\begin{cases}x< 32\\x>54\end{cases}\left(loai\right)}\)
\(\Leftrightarrow-32\le x\le54\)
Vậy MIN A=86 \(\Leftrightarrow-32\le x\le54\)
Bài giải
Ta có :
\(\left|x+32\right|\ge0\)
\(\left|x-54\right|\ge0\)
\(\Rightarrow\text{ }\left|x +32\right|+\left|x-54\right|\ge0\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|x+32\right|=0\\\left|x-54\right|=0\end{cases}}\) \(\Rightarrow\text{ }\hept{\begin{cases}x=-32\\x=54\end{cases}}\)
Vậy GTNN của \(\left|x+32\right|+\left|x-54\right|=0\)
\(\frac{-5}{3}-\frac{1}{2}=\frac{-10-3}{6}=\frac{-13}{6}\ne\frac{3}{4}\)
Đề bài yêu cầu j vậy????
.........................................
TÍNH CÁI GÌ V BẠN