K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

\(A=\sqrt{x}-3\ge-3\)với \(\forall x\)

\(A_{min}=-3\Leftrightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

\(B=\sqrt{x}-1+2=\sqrt{x}+1\ge1\)với \(\forall x\)

\(\Rightarrow B_{min}=1\Leftrightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

30 tháng 6 2019

Mình chỉ có thể cho đáp án đc thôi. Tại vì bài làm khá là dài. Thông cảm nha 😊

a) x € [ -2, 5]

b) x= -7/2

c) x=2 , x=22

30 tháng 6 2019

HÔM NÀO RẢNH BẠN GIẢI CHO MÌNH NHÉ

30 tháng 6 2019

\(\frac{-3}{7}\).\(^{\left(-3\right)^2}\)-\(\sqrt{\frac{4}{49}}\)

\(\frac{-3}{7}.9-\sqrt{\frac{4}{49}}\)

=\(\frac{-27}{7}-\sqrt{\frac{4}{49}}\)

=\(\frac{-27}{7}-\frac{2}{7}\)

=\(\frac{-29}{7}\)

Chúc bạn học tốt

30 tháng 6 2019

\(\left|-\frac{3}{7}\right|\cdot(-3)^2-\sqrt{\frac{4}{49}}\)

\(=\frac{3}{7}\cdot9-\frac{2}{7}\)

\(=\frac{27}{7}-\frac{2}{7}=\frac{25}{7}\)

30 tháng 6 2019

Bài làm

x = \(\frac{20}{21}+\frac{21}{22}+\frac{22}{23}+\frac{23}{20}\)

x = 1 + 1 + 1 + 1 + \((\)\(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)

Ta thấy 0 < \(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\)

\(\Rightarrow\) 1 + 1 + 1 + 1 + \((\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)> 4

\(\Rightarrow\)x > 4

30 tháng 6 2019

\(a,A=5x+8xy+5y=(5x+5y)+8xy\)

\(=5(x+y)+8xy\)

\(=5\cdot\frac{2}{5}+8\cdot(-1)=2+(-8)=-6\)

\(b,B=2xy+7xyz-2xz\)

\(=2\cdot\frac{3}{7}y+7\cdot\frac{3}{7}yz-2\cdot\frac{3}{7}z\)

\(=\frac{6}{7}y+3yz-\frac{6}{7}z\)

\(=\frac{6}{7}y+3\cdot(-1)-\frac{6}{7}z\)

\(=\frac{6}{7}y+(-3)-\frac{6}{7}z\)

Làm nốt :v

30 tháng 6 2019

a)

A=\(5\left(x+y\right)+8xy\) 

 \(=5.\frac{2}{5}+8.\left(-1\right)\) 

  \(=2-8\) 

   \(=-6\) 

Vậy.......

hc tốt

30 tháng 6 2019

nhầm đề k vậy

1 tháng 7 2019

mình cũng nghĩ là mình chép sai 

mình vắt óc ra cx chẳng lm đc

chắc là mình nhầm 

xl mn nha

có lẽ là \(\frac{8}{25}\)=\(\frac{2^n}{5^{n-1}}\)

30 tháng 6 2019

sorry

30 tháng 6 2019

\(B=\frac{x^2+17}{x^2+7}\)

\(\Leftrightarrow Bx^2+7B=x^2+17\)

\(\Leftrightarrow Bx^2+7B-x^2-17=0\)

\(\Leftrightarrow x^2\left(B-1\right)+7B-17=0\)

Để pt có nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow0^2-\left(B-1\right)\left(7B-17\right)\ge0\)

\(\Leftrightarrow7B^2-24B+17\le0\)

\(\Leftrightarrow1\le B\le\frac{17}{7}\)

Vậy \(max_B=\frac{17}{7}\Leftrightarrow x=0\)

30 tháng 6 2019

Phuongdeptrai274:e có cách khác a thử check nha!

\(B=\frac{x^2+17}{x^2+7}\)

\(B=\frac{x^2+7+10}{x^2+7}\)

\(B=1+\frac{10}{x^2+7}\)

\(\Rightarrow B\le1+\frac{10}{0+7}=\frac{17}{7}\)

Dấu "=" xảy ra khi x=0