3: Cho tam giác ABC vuông tại A, đường cao AH. Đường phân giác trong góc B cắt AH, AC lần lượt tại E và F. Đường phân
giác trong góc C cắt AH, AB lần lượt tại K và L. M và N lần lượt là trung điểm của EF và KL. Chứng minh MN // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\sqrt{x+4\sqrt{x-4}}\) \(=\sqrt{x-4+4\sqrt{x-4}+4}\)\(=\sqrt{\left(\sqrt{x-4}\right)^2+2.\sqrt{x-4}.2+2^2}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}\)\(=\sqrt{x-4}+2\)
Bằng cách tương tự, ta có: \(\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4}-2\)
\(\Rightarrow\sqrt{x+4\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\)\(=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)\)\(=4\)
Vậy [...]
Ta có: \(a^3+b^3=2021c^3\)\(\Leftrightarrow a^3+b^3+c^3=2022c^3\)
Mà \(2022⋮3\)\(\Rightarrow2022c^3⋮3\)\(\Rightarrow a^3+b^3+c^3⋮3\)
Mặt khác \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)\)\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
Vì \(a,a-1,a+1\)là 3 số liên tiếp nên trong 3 số này luôn tồn tại một bội của 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮3\)
Tương tự, ta cũng có \(b\left(b-1\right)\left(b+1\right)⋮3\)và \(c\left(c-1\right)\left(c+1\right)⋮3\)
\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)⋮3\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮3\)
Mà \(a^3+b^3+c^3⋮3\left(cmt\right)\)\(\Rightarrow a+b+c⋮3\left(đpcm\right)\)
Điều kiện \(x,y\ne-1\)
Xét phương trình thứ hai:
\(xy+x+y=3\)\(\Leftrightarrow xy+x+y+1=4\)\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=4\)\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4\)
Như vậy hệ đã cho \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}+\frac{1}{y+1}=1\\\left(x+1\right)\left(y+1\right)=4\end{cases}}\)(*)
Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}\left(a,b\ne0\right)}\), lúc này (*) \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=1\\ab=4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a+b}{ab}=1\\ab=4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a+b}{4}=1\\b=\frac{4}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+\frac{4}{a}=4\left(1\right)\\b=\frac{4}{a}\left(2\right)\end{cases}}\)
Giải phương trình \(\left(1\right)\), ta có: \(a+\frac{4}{a}=4\)\(\Leftrightarrow\left(\sqrt{a}\right)^2-2.\sqrt{a}.\frac{2}{\sqrt{a}}+\left(\frac{2}{\sqrt{a}}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{2}{\sqrt{a}}\right)^2=0\)\(\Leftrightarrow\sqrt{a}-\frac{2}{\sqrt{a}}=0\)\(\Leftrightarrow\sqrt{a}=\frac{2}{\sqrt{a}}\)\(\Leftrightarrow\left(\sqrt{a}\right)^2=2\)\(\Leftrightarrow a=2\)(nhận)
Thay vào \(\left(2\right)\), ta có: \(b=\frac{4}{a}=\frac{4}{2}=2\)(nhận)
Như vậy ta có \(a=b=2\)\(\Leftrightarrow x+1=y+1=2\)\(\Leftrightarrow x=y=1\)(nhận)
Vậy hệ đã cho có nghiệm duy nhất (1;1)