Thực hiện phép chia các đơn thức sau:
a,\(a^2b^2\div(\frac{-2}{3}ab^2)\)
b,\(x^{n-1}\times y^{n-2}\div2x^{n-2}\times y^{n-3}\)
c,\(2a^{2k}b^k\div3a^{2k}\times b^{k-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(x^2-x\right)\left(x^2-x-6\right)+9\)
\(=\left(x^2-x\right)^2-6\left(x^2-x\right)+9=\left(x^2-x-3\right)^2\ge0\)
Vậy GTLN của B là 0
Làm bài này phải dựa theo bảng chữ cái á :vvv
\(P=\left(x-a\right)\left(x-b\right)\left(x-c\right).....\left(x-y\right)\left(x-z\right)\)
\(P=\left(x-a\right)\left(x-b\right)\left(x-c\right).....\left(x-x\right)\left(x-y\right)\left(x-z\right)\)
\(P=\left(x-a\right)\left(x-b\right)\left(x-c\right).....0.\left(x-y\right)\left(x-z\right)\)
\(P=0\)
nà ní ???
Biểu thức này chỉ có GTLN thôi.
\(A=\frac{3}{2x^2+x+1}=\frac{3}{2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)}=\frac{3}{2\left[\left(x+\frac{1}{4}\right)^2+\frac{7}{16}\right]}=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{3}{\frac{7}{8}}=\frac{24}{7}\)
GTLN của A là \(\frac{24}{7}\) khi \(x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)
\(\left(m^2+n^2-5\right)^2-4\left(mn+2\right)^2\)
\(=\left(m^2+n^2-5\right)^2-\left(2mn+4\right)^2\)
\(=\left(m^2+n^2-5-2mn-4\right)\left(m^2+n^2-5+2mn+4\right)\)
\(=\left[\left(m^2-2mn+n^2\right)-3^2\right].\left[\left(m^2+2mn+n^2\right)-1^2\right]\)
\(=\left[\left(m-n\right)^2-3^2\right]\left[\left(m+n\right)^2-1^2\right]\)
\(=\left(m-n-3\right)\left(m-n+3\right)\left(m+n-1\right)\left(m+n+1\right)\)