K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

a)Dự đoán dấu "=" xảy ra tại \(x=\frac{1}{2}\),hay \(x^2=\frac{1}{4}\).Ta biến đổi như sau:

\(A=\frac{x^2+1}{x}=\frac{x^2+\frac{1}{4}+\frac{3}{4}}{x}=\frac{x^2+\frac{1}{4}}{x}+\frac{3}{4x}\) (1)

Do x > 0 nên \(\frac{x^2+\frac{1}{4}}{x}\ge\frac{2\sqrt{\frac{1}{4}x}}{x}=\frac{2x.\frac{1}{2}}{x}=1\) (BĐT Cô si) (2)

\(0< x\le\frac{1}{2}\Rightarrow\frac{1}{x}\ge2\Rightarrow\frac{3}{4x}\ge\frac{6}{4}=\frac{3}{2}\) (3)

Từ (1),(2) và (3) suy ra \(A\ge1+\frac{3}{2}=\frac{5}{2}\) hay \(A_{min}=\frac{5}{2}\Leftrightarrow x=\frac{1}{2}\)

b)Ta có: \(A=\frac{x^2+1}{x}=\frac{x^2}{x}+\frac{1}{x}=x+\frac{1}{x}\)

Dự đoán xảy ra cực trị tại x = 2,ta biến đổi như sau:

\(x+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\)

\(\ge2\sqrt{\frac{1x}{4x}}+\frac{3x}{4}=2.\frac{1}{2}+\frac{3x}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Vậy ....

Ngoài ra câu b) còn có thể giải như sau:

Dự đoán xảy ra cực trị tại x = 2,tức là x2 =4 ,ta biến đổi:

\(A=\frac{x^2+4-3}{x}=\frac{x^2+4}{x}-\frac{3}{x}\) (1)

Do x > 0 nên \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2.x.2}{x}=4\) (2)

Do \(x\ge2\Rightarrow\frac{1}{x}\le\frac{1}{2}\Rightarrow\frac{3}{x}\le\frac{3}{2}\Rightarrow\frac{-3}{x}\ge\frac{-3}{2}\) (3)

Từ (1),(2) và (3) suy ra \(A\ge4-\frac{3}{2}=\frac{5}{2}\)

Vậy ...

4 tháng 11 2018

Chết nhầm,bạn sửa chỗ đoạn cuối: \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2x.2}{x}=4\)

thành ​​\(\frac{x^2+4}{x}\ge\frac{2\sqrt{4x^2}}{x}=\frac{2x.2}{x}=4\) mới chính xác nha!Mình đánh nhanh quá nên nhầm:v Đánh nhanh mà còn mất 11 phút =))))

4 tháng 11 2018

\(x\left(x-3\right)-3x+9=0\)

\(x\left(x-3\right)-3\left(x-3\right)=0\)

\(\left(x-3\right)\left(x-3\right)=0\)

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy x = 3

4 tháng 11 2018
(x • (x - 3) -  3x) +  9  = 0 
(x - 3)2  = 0 

(x-3)2 = 0 

:   x-3  = 0 

x = 3

học tốt

4 tháng 11 2018

a)\(x^2-y^2+7x+7y\)

\(=\left(x-y\right).\left(x+y\right)+7.\left(x+y\right)\)

\(=\left(x+y\right).\left(x-y+7\right)\)

\(b,x^2+5x+4\)

\(=x^2+x+4x+4\)

\(=x.\left(x+1\right)+4.\left(x+1\right)\)

\(=\left(x+4\right).\left(x+1\right)\)

\(c,x^3-9x^2\)

\(=x^2.\left(x-9\right)\)

\(d,x^3+x^2+2x\)

\(=x.\left(x^2+x+1\right)\)

\(e,3x^2+3y^2-6xy-1^2\)

\(=\left(3x-3y\right)^2-1^2\)

\(=\left(3x-3y-1\right).\left(3x-3y+1\right)\)

5 tháng 11 2018

cho sửa câu cuối cái nha :>

\(=3.\left(x-y\right)^2-1^{^2}\)

\(=3x^2-3y^2-1^2\)

đến đây tịt r :< sory 

4 tháng 11 2018

\(A=2x^2-4x+3\)

\(A=2\left(x^2-2x+\frac{3}{2}\right)\)

\(A=2\left(x^2-2\cdot x\cdot1+1^2+\frac{1}{2}\right)\)

\(A=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)

\(A=2\left(x-1\right)^2+1\)

Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)

\(\Rightarrow A>0\forall x\)

4 tháng 11 2018

ta có: A = 2x2 - 4x + 3 = x2 + x2 - 2x - 2x + 1 + 1 + 1

A = (x2 - 2x +1) + (x2 -2x+1) + 1

A = (x-1)2 + (x-1)2  +1

A = 2.(x-1) + 1

mà \(2.\left(x-1\right)^2\ge0\Rightarrow2.\left(x-1\right)^2+1\ge1.\)

=> A = 2.(x-1)2 + 1 > 0 (đpcm)

...

ctv bị lạc trôi à, hay sao mak làm kiểu ý z bài náy cm mak đâu phải tìm GTNN, GTLN

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!! 

0
11 tháng 12 2022

:))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))chịu thôi khó mãi thôi chỉ cho câu D là được rồi 

 

 

4 tháng 11 2018

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)