a) \(\left(x^4-6x^3+16x^2-22x+a\right):\left(x^2+2x+3\right)\)
b) \(\left(2x^2+ax+1\right):\left(x-3\right)dư4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+5y^2-2xy+8y+4=0\)
\(x^2+y^2+4y^2-2xy+8y+4=0\)
\(\left(x^2-2xy+y^2\right)+\left(4y^2+8y+4\right)=0\)
\(\left(x-y\right)^2+\left(2y+2\right)^2=0\)
Vì \(\left(x-y\right)^2\ge0\forall x;y\)và \(\left(2y+2\right)^2\ge0\forall y\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\2y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=-1\end{cases}\Rightarrow}x=y=-1}\)
Vậy x = y = -1
trước tiên mik xin l các bn vì mik vt sai đề:5x4-x2-6
5x4-x2-6
=5x4+5x2-(6x2+6)
=5x2(x2+1)-6(x2+1)
=(5x2-6)(x2+1)
ai ko hiểu thì ? đừng k sai nha!
Ta có: x+y=1
=> (x+y)^2=1
x^2+2xy+y^2=1
Có: x^2+y^2=4
=> 4+2xy=1
=> xy=-3/2
Ta có: x^3+y^3
=(x+y)(x^2-xy+y^2)
=1.(4+3/2)
=5/2
\(\left(x-1\right)^2\ge0\Rightarrow x^2-2x+1\ge0\Rightarrow x^2+1\ge2x\)
\(\left(y-2\right)^2\ge0\Rightarrow y^2-4y+4\ge0\Rightarrow y^2+4\ge4y\)
\(\left(z-3\right)^2\ge0\Rightarrow z^2-6z+9\ge0\Rightarrow z^2+9\ge6z\)
Do đó: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)
Dấu "=" xảy ra khI: \(\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
Vậy \(C=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^3}=\frac{6^2}{6^3}=\frac{1}{6}\)
Chúc bạn học tốt.
Theo đề bài ta suy ra:
\(\left(x-2014\right)^3+\left(x+2012\right)^3=\left[2\left(x-1\right)\right]^3\Rightarrow\left(x-2014\right)^3+\left(x+2012\right)^3=\left(2x-2\right)^3\)(1)
Đặt \(\hept{\begin{cases}x-2014=a\\x+2012=b\end{cases}\Rightarrow}2x-2=a+b\)
Khi đó từ (1), ta có:
\(a^3+b^3=\left(a+b\right)^3\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\Rightarrow3ab\left(a+b\right)=0\)
\(\Rightarrow3\left(x-2014\right)\left(x+2012\right)\left(2x-2\right)=0\)
Từ đó tìm được \(x\in\left\{2014;-2012;1\right\}\)