Cho đường tròn (O;R) và S nằm ngoài (O). Vẽ 2 tiếp tuyến SA và SB đến (O) với A,B là 2 tiếp điểm. Lấy C thuộc (O), C nằm trên nữa mặt phẳng bờ là đường thẳng AB chứa S. Gọi D,E,F lần lượt là hình chiếu của C lên AB,SA,SB. Kẻ đường kính AK của (O). gọi M là hình chiếu của B trên AK và N là giao điểm của SK và BM. Chứng minh SE2 + BF2 + AD2 = SF2 + BD2 + AE2 và xác định vị trí của S sao cho x = SF2+ DB2 + AE2 nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk : x > 0
Để A < 0 thì \(\sqrt{x}.\left(\sqrt{x}-2\right)\)< 0 => \(\sqrt{x}-2\)< 0 ( vì \(\sqrt{x}>0\))
=> \(\sqrt{x}\)< 2 => x < 4 => 0 < x < 4 ( kết hợp đk)
k mk nha
Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2
Sử dụng BĐT AM-GM ta có:
\(\sqrt{1+x^3}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x^2-x+1+x+1}{2}=\frac{x^2+2}{2}\)
Đẳng thức xảy ra <=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Ta có \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^2}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)
\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2\left(b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)
Tương tự có \(\hept{\begin{cases}\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\\\sqrt{\frac{c^3}{c^3+\left(a+c\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\end{cases}}\)
Cộng 3 vế BĐT trên ta được đpcm
Dấu "=" <=> a=b=c
bằng 2222222222222222222222222222222222222222222222222222222222222222222222
giúp với gấp gấp