Em đố các anh em là :
1,Tại sao khi bắn súng người ta lại nhắm một mắt?
2,Bạn đang ở trong một cuộc đua và bạn vừa vượt qua người thứ nhì . Vậy bây giờ bạn đang ở vị trí nào trong đoàn đua ấy?
3,Có con chuột lại cực kỳ sợ mèo. Con chuột nào vậy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\sqrt{x-1}=5\left(x-1\right)\)
đkxđ \(x-1\ge0\Leftrightarrow x\ge1\)
pt đã cho \(\Leftrightarrow5\left(x-1\right)-2x\sqrt{x-1}=0\)\(\Leftrightarrow\sqrt{x-1}\left(5\sqrt{x-1}-2x\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=0\\5\sqrt{x-1}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-1=0\\5\sqrt{x-1}=2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(nhận\right)\\25\left(x-1\right)=4x^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\4x^2-25x+25=0\left(1\right)\end{cases}}\)
Giải \(\left(1\right)\), ta được \(4x^2-25x+25=0\)\(\Leftrightarrow4x^2-20x-5x+25=0\)\(\Leftrightarrow4x\left(x-5\right)-5\left(x-5\right)=0\)\(\Leftrightarrow\left(x-5\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\4x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{4}\end{cases}}\)(nhận)
Vậy phương trình đã cho có tập nghiệm \(S=\left\{1;\frac{5}{4};5\right\}\)
cho tam giác ABC vuông tại A, đường cao AH
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng hệ thức : \(AB.AC=AH.BC=9\sqrt{18}=27\sqrt{2}\)(1)
Theo định lí Pytago ta có : \(AB^2+AC^2=BC^2=81\)(2)
Từ (1) ; (2) ta có hệ phương trình \(\hept{\begin{cases}AB.AC=27\sqrt{2}\\AB^2+AC^2=81\end{cases}}\)
bạn dùng phương pháp thế giải hệ này nhé
Giả sử \(\Delta ABC\)vuông tại A, đường cao AH, khi đó theo đề bài, ta có \(BC=9,AH=\sqrt{18}\). Ta cần tính AB, AC.
Đặt \(BH=x\left(0< x< 9\right)\), dễ thấy \(CH=BC-BH=9-x\)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow AH^2=BH.CH\left(htl\right)\)\(\Rightarrow\left(\sqrt{18}\right)^2=x\left(9-x\right)\)
\(\Leftrightarrow18=9x-x^2\)\(\Leftrightarrow x^2-9x+18=0\)\(\Leftrightarrow x^2-3x-6x+18=0\)\(\Leftrightarrow x\left(x-3\right)-6\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x-6\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-6=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}BH=3\\BH=6\end{cases}}\)
Khi \(BH=3\), hiển nhiên \(CH=BC-BH=9-3=6\)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow\hept{\begin{cases}AB^2=BH.BC\left(htl\right)\\AC^2=CH.BC\left(htl\right)\end{cases}}\Rightarrow\hept{\begin{cases}AB=\sqrt{BH.BC}=\sqrt{3.9}=3\sqrt{3}\\AC=\sqrt{CH.BC}=\sqrt{6.9}=3\sqrt{6}\end{cases}}\)
Nếu \(BH=6\)thì ngược lại, ta có \(\hept{\begin{cases}AB=3\sqrt{6}\\AC=3\sqrt{3}\end{cases}}\)
Như vậy độ dài 2 cạnh góc vuông của tam giác này là \(3\sqrt{3}\)và \(3\sqrt{6}\)
Giả sử \(\Delta ABC\)đều ngoại tiếp đường tròn (I), khi đó ta cần tính BC (hoặc AB, AC đều được)
Kẻ đường cao AH của \(\Delta ABC\). Nối B với I.
Ta ngay lập tức có BI là tia phân giác của \(\widehat{ABC}\)(vì I là tâm đường tròn nội tiếp \(\Delta ABC\))
Mà \(\widehat{ABC}=60^0\)(do \(\Delta ABC\)đều) \(\Rightarrow\widehat{IBH}=\frac{60^0}{2}=30^0\)
\(\Delta IBH\)vuông tại H \(\Rightarrow BH=IH.\cot\widehat{IBH}=r.\cot30^0=r\sqrt{3}\)
Mặt khác \(\Delta ABC\)đều có đường cao AH \(\Rightarrow\)AH cũng là trung tuyến \(\Rightarrow\)H là trung điểm BC
\(\Rightarrow BC=2BH=2r\sqrt{3}\)\(\Rightarrow\)Chọn ý thứ ba.
Gọi số cần tìm là \(\overline{ab}\) theo đề bài ta có
\(a+b=8\left(1\right)\)
Ta có
\(\overline{ba}-\overline{ab}=18\Rightarrow10b+a-10a-b=18\)
\(\Leftrightarrow b-a=2\left(2\right)\)
Giải hệ \(\hept{\begin{cases}a+b=8\\b-a=2\end{cases}\Rightarrow\hept{\begin{cases}a=3\\b=5\end{cases}}}\)
Số cần tìm là 35
Gọi giá tiền một cây bút, một quyển vở lần lượt là x;y ( \(x;y\inℕ^∗\))
Nếu mua 9 quyển vở và 15 cái bút giá tiền là 99 300 đồng
ta có phương trình : \(15x+9y=99300\)(1)
Nếu mua 12 quyển vở và 10 cây bút thì hết 97 400 đồng
ta có phương trình : \(10x+12y=97400\)(2)
Từ (1) ; (2) ta có hệ phương trình \(\hept{\begin{cases}15x+9y=99300\\10x+12y=97400\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3500\\y=5200\end{cases}}\)(tm)
Vậy ...
bạn xem lại đề phần a nhé
b, \(x^2+2\left(m-1\right)x+m^2-2m=0\)
\(\Delta'=\left(m-1\right)^2-\left(m^2-2m\right)=1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\left(1-m\right)\left(1\right)\\x_1x_2=m^2-2m\left(2\right)\end{cases}}\)
Lại có : \(x_1+3x_2=5\)(3)
Từ (1) ; (3) ta có : \(\hept{\begin{cases}x_1+x_2=2-2m\\x_1+3x_2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_2=3+2m\\x_1=2-2m-x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{3}{2}+m\\x_1=2-2m-\frac{3}{2}-m=-3m+\frac{1}{2}\end{cases}}\)
Ta có : \(x_1x_2=m^2-2m\Rightarrow\left(m+\frac{3}{2}\right)\left(-3m+\frac{1}{2}\right)=m^2-2m\)
\(\Leftrightarrow-3m^2+\frac{m}{2}-\frac{9}{2}m+\frac{3}{4}=m^2-2m\)
<=> - 4m^2 -2m + 3/4 = 0 <=> m = 1/4 ; m = -3/4
1 . Nhắm 2 mắt thì sao mà bắn được
2 . Lên thứ nhì
3 . Chuột nào chẳng sợ mèo
1,Nhắm 2 mắt thì sẽ không thấy đường để bắn.
2,thứ nhì
3,chuột nào chả sợ mèo