Giải hệ phương trình sau:
\(\hept{\begin{cases}y=\frac{2x^2}{1+x^2}\\z=\frac{2y^2}{1+y^2}\\x=\frac{2z^2}{1+z^2}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thiên Thư mk cx hk lp 7 nek
a\ \(\sqrt{x^2-4x+4}=6\)
\(x^2-4x+4=6^2=36\)
\(x\left(x-4\right)=32\)
ta có \(32=8.4=\left(-8\right)\left(-4\right)\)
\(\Rightarrow x\in\left\{8;-4\right\}\)
b)\(\sqrt{2x+5}=2x-1\)
\(2x+4=4x^2-4x\)
\(2\left(x+2\right)=4x\left(4x-1\right)\)
\(........................\)
e bí mất r a ạ
Ta có:\(y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\Leftrightarrow y\le x\)
Tương tự ta có:\(z\le y,y\le x\)
Dấu = xảy ra khi \(x=y=z\)
Đến đây dễ rồi