chào mọi người ai onl hông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định \(-\sqrt{2}\le x\le\sqrt{2}\) và \(x\ne0\).
Áp dụng bất đẳng thức Bu-nhi-a ta có:
\(\left(x+\sqrt{2-x^2}\right)^2\le\left(1^2+1^2\right)\left(x^2+2-x^2\right)=4\).
Suy ra \(-2\le x+\sqrt{2-x^2}\le2\).
Áp dụng bất dẳng Cô-si ta có: \(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\).
Suy ra \(VT\le2,VT\ge2\), Suy ra phương trình có nghiệm khi và chỉ khi \(\hept{\begin{cases}x+\sqrt{2-x^2}=2\\x^2+\frac{1}{x^2}=2\end{cases}}\)\(\Leftrightarrow x=1\).
\(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow a+b=ab\).
\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\Leftrightarrow\) \(a+b=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\)
\(\Leftrightarrow2\sqrt{\left(a-1\right)\left(b-1\right)}=2\)\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)
\(\Leftrightarrow ab-a-b+1=1\)\(\Leftrightarrow a+b=ab\) (luôn đúng).
Ta hoàn thành chứng minh.
Giả sử \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\)
\(\Leftrightarrow2a^4+2b^4-a^3b-ab^3-2a^2b^2\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\) \(\forall a;b\) \(\left(1\right)\)
Lại có: \(a^2-ab+b^2=\left(a^2-2.a.\frac{b}{2}+\frac{b^2}{4}\right)+\frac{3b^2}{4}\)
\(=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) \(\forall a;b\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\forall a;b\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\forall a;b\)
Vậy \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\) với mọi a;b
Xác xuất là 10% vì để cả 2 đông cơ hỏng là 50%+40%=90% nên chỉ có 10% khả năng về đc đích