Giải PT: x2 + y2 + xy - x - y + 2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwaz:
\(\left(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\right)\left[xy^2+y^2\left(x+2y\right)\right]\ge\left(x^2+3y^2\right)^2\)
\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2xy^2+2y^3}\)
\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2y^2\left(x+y\right)}\) \(\left(1\right)\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge x+y\)
Do đó: Áp dụng BĐT AM-GM ngược dấu:
\(2y^2\left(x+y\right)\le2y^2\left(x^2+y^2\right)\le\frac{\left(x^2+y^2+2y^2\right)^2}{4}\)
\(\Leftrightarrow2y^2\left(x+y\right)\le\frac{\left(x^2+3y^2\right)^2}{4}\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\) (đpcm)
Dấu "=" xảy ra khi x=y=1
Vậy \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)
Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)
= (1 + 1/x)(1 + 1/y)
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy)
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\)
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)
bài này easy thôi:
ta có:\(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0;\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0̸.\)với \(\forall a,b>0\)
\(\Rightarrow a-\sqrt{a}+\frac{1}{4}\ge0;b-\sqrt{b}+\frac{1}{4}\ge0\)
\(\Rightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)với \(\forall a,b>0\)
\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}.\)
Mặt khác \(a+b\ge2\sqrt{ab}>0.\)
Nhân từng vế ta được:
\(\left(a+b\right)\left(\left(a+b\right)+\frac{1}{2}\right)\ge2\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right).\)
hay \(\left(a+b\right)^2+\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}.\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{4}\)