K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Áp dụng BĐT Cauchy-Schwaz: 

\(\left(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\right)\left[xy^2+y^2\left(x+2y\right)\right]\ge\left(x^2+3y^2\right)^2\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2xy^2+2y^3}\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2y^2\left(x+y\right)}\)        \(\left(1\right)\)

 Áp dụng BĐT AM-GM:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow\left(x^2+y^2\right)^2\ge\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\ge x+y\)           

Do đó: Áp dụng BĐT AM-GM ngược dấu: 

   \(2y^2\left(x+y\right)\le2y^2\left(x^2+y^2\right)\le\frac{\left(x^2+y^2+2y^2\right)^2}{4}\)

\(\Leftrightarrow2y^2\left(x+y\right)\le\frac{\left(x^2+3y^2\right)^2}{4}\)               \(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)   (đpcm)

Dấu "=" xảy ra khi x=y=1

Vậy \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)

1 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bài tập Tất cả

7 tháng 12 2017

Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)

= (1 + 1/x)(1 + 1/y) 
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy 
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy) 
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
 \(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\) 
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)

7 tháng 12 2017
giải nhanh giùm mk với!
7 tháng 12 2017

mk đang cần gấp

7 tháng 12 2017

bài này easy thôi:

ta có:\(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0;\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0̸.\)với \(\forall a,b>0\)

\(\Rightarrow a-\sqrt{a}+\frac{1}{4}\ge0;b-\sqrt{b}+\frac{1}{4}\ge0\)

\(\Rightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)với \(\forall a,b>0\)

\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}.\)

Mặt khác \(a+b\ge2\sqrt{ab}>0.\)

Nhân từng vế ta được:

\(\left(a+b\right)\left(\left(a+b\right)+\frac{1}{2}\right)\ge2\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right).\)

hay \(\left(a+b\right)^2+\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}.\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{4}\)