Cho a, b, c là ba số thực dương thỏa mãn ab + bc + ac = 1. Tính
\(P=a\sqrt{\frac{\left(1+c^2\right)\left(1+b^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+c^2\right)\left(1+a^2\right)}{1+c^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n nguyên tố >= 5 nên n không chia hết cho 3 => 4n không chia hết cho 3
Vì 2n+1 nguyên tố nên 2n+1 không chia hết cho 3 => 2(2n+1) không chia hết cho 3 => 4n+2 không chia hết cho 3
Vì 4n, 4n+1, 4n+2 là 3 số tự nhiên liên tiếp
nên phải có 1 số chia hết cho 3
mà 4n và 4n+2 không chia hết cho 3
nên 4n+1 chia hết cho 3
mà 4n+1>3
do đó 4n+1 là hợp số
ĐK:\(x\in R\)
\(\Leftrightarrow x^2+4x+4-\sqrt{x^2+4x+4}-2=0\)
đặt \(x^2+4x+4=a\)
\(\Leftrightarrow a^2-a-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2\\a=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+4x+4=2\\x^2+4x+4=-1\end{cases}}\)
tự full đi
\(A=\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3-\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{3+\sqrt{12}+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{3}-1}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{2-\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{8-\sqrt{48}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{6-2\sqrt{6.2}+2}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}=1\)
\(x^2-canbacx+5=5\)
Dat an phu dua ve he doi xung
DK:\(x\ge-5\)
Dat \(canbacx+5=t\left(t\ge0\right)\)
\(x^2-5=t\left(1\right)\)
\(x+5=t^2\Leftrightarrow t^2-5=x\left(2\right)\)
Lay \(\left(1\right)-\left(2\right)\)
\(\left(x-t\right).\left(x+t+1\right)=\)
Ban tu giai tiep nha !!!
\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
\(x=\sqrt{y^3+3}-y-\sqrt{x^3+3}\)
Tương tự ta có\(y=\sqrt{x^2+3}-y-\sqrt{x^2-3}\)
Thay x + y ta đc -x - y
=> 2x + 2y = 0
=> x + y = 0
Từ ab + bc + ac =1
=> ab + bc + ac + a2 = 1 + a2
=> 1 + a2 = (a+b)(a+c) (1)
Tương tự: 1 + b2 = (a+b)(b+c) (2)
1 + c2 = (a+c)(b+c) (3)
Thay (1) (2) (3) vào P
P= a\(\sqrt{\left(b+c\right)^2}\)+ b\(\sqrt{\left(a+c\right)^2}\)+ c\(\sqrt{\left(a+b\right)^2}\)
= a|b+c| + b|a+c| + c|a+b|
= a(b+c) + b(a+c) + c(a+b) (do a,b,c >0)
= ab + ac +ab + bc +ac +bc
= 2(ab + ac + bc)
=2