cho a,b,c> 0. chứng minh rằng
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\le\frac{3}{2}\sqrt{\frac{a^2+b^2+c^2}{ab+bc+ca}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có pt
<=>\(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}=6\)
đặt \(\sqrt{x+3}=a;\sqrt{x+7}=b\)
nên pt <=>\(ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)
\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\)
đến đây thì dễ rồi
biêu thức dài dài trong căn pt thành nhân tử là \(\sqrt{\left(x+3\right)\left(x+7\right)}\)
xong rùi bn pt thành nhân tử sẽ có dạng \(\left(\sqrt{x+3}-2\right)\left(\sqrt{x+7}-3\right)=0\)
đến day bn làm tiếp nhé
ta có ...=\(\frac{3n^5+5n^3+7n}{15}\)
ta có \(5n^3+7n=n\left(5n^2+7\right)\)
xét n chia hết cho 3 thì \(5n^3+7n⋮3\Rightarrow5n^3+7n+3n^5⋮3\)
xét n không chia hết cho 3 =>\(n^2\equiv1\left(mod3\right)\Rightarrow5n^2\equiv2\left(mod3\right)\Rightarrow5n^2+7⋮3\)
=>\(5n^3+7n+3n^5⋮3\forall n\in Z\)
ta có \(3n^5+7n=n\left(3n^4+7\right)\)
xét n chia hết cho 5 =>\(3n^5+7n+5n^3⋮5\)
xét n không chia hết cho 5 =>\(n^4\equiv1\left(mod5\right)\Rightarrow3n^4\equiv3\left(mod5\right)\Rightarrow3n^4+7⋮5\)
=>\(5n^3+3n^5+7n⋮5\forall n\in Z\)
=>tử chia hết cho 15 => ... là số nguyên (ĐPCM)
cai nay phai la he moi giai dc,hoac la dua ra dag Tog Quat
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2\left(x-2\right)=2-y\\\left(y+1\right)^2\left(y-2\right)=2\left(2-z\right)\\\left(z+1\right)^2\left(z-2\right)=3\left(2-x\right)\end{cases}}\)
nhân từng vế của pt , ta có \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2\left(x-2\right)\left(y-2\right)\left(z-2\right)=6\left(2-x\right)\left(2-y\right)\left(2-z\right)\)
\(\Leftrightarrow\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\right]\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\)
đến đây thì dễ rồi, sẽ => x=2, hoặc y=2 hoặc z=2, thay vao rồi giải nhé
https://goo.gl/BjYiDy