K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

xin lỗi đã trả lời xàm

5 tháng 1 2018

Để hệ có nghiệm duy nhất : 

\(\Rightarrow\frac{a}{a^'}\ne\frac{b}{b^'}\Leftrightarrow\frac{2}{m}\ne\frac{m}{2}\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

17 tháng 1 2018

Đặt 3n+19=(3x+1)2= 32x+2.3x+1 <=> 3n=32x+2.3x-18 <=> 3n=32.(32x-2+2.3x-2-2)

Vì 3n chia hết cho 3 ( n thuộc N*) => 32x-2+2.3x-2-2 chia hết cho 3 ( x>2 vì n thuộc N)

=> 32x-2+2.(3x-2-1) => 3x-2-1 chia hết cho 3 => 3x-2=1 => x=2 => n=4

6 tháng 1 2018

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

5 tháng 1 2018

sorry nha!Mik ko bít làm.???