K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

<=> [x.(x+3)] . [(x+1).(x+2)] = y^2

<=> (x^2+3x).(x^2+3x+2) = y^2

<=> (x^2+3x+1)^2-1 = y^2

<=> (x^2+3x+1)^2-y^2 = 1

<=> (x^2+3x+1-y).(x^2+3x+1+y) = 0

Đến đó bạn tự giải nha

Tk mk nha

6 tháng 1 2018

abc=100a+10b+c=n2-1(*)

cba=100c+10b+a=n2-4n+4(**)

(*)-(**)=99(a-c)=4n+5

=> 4n-5 chia hết cho 99

Mà \(100\le abc\le999\)

=> \(100\le n^2-1\le999\)

<=> \(101\le n^2\le1000\)=\(11< 31\)=\(39\le4n-5\le199\)

Vì  4n+5 chia hết cho 99 

Nên 4n-5=99

4n=99+5

4n=104

n=104:4

n=26

Vậy abc=675

6 tháng 1 2018

bạn ơi giúp mk giải nốt bài 2 đc ko ? cảm ơn bạn rất rất nhìu

6 tháng 1 2018

(xy+yz+zx)(x+y+z)-xyz

= (xy+yz)(x+y+z)+ x2z+xyz+ xz2-xyz

= (xy+yz)(x+y+z)+ x2z + xz2

= (x+z)(xy+y2+zy)+ xz(x+z) = (x+z)(xy+y2+zy+xz) = (x+z)(x+y)(x+z) 

8 tháng 1 2018

A B O C M N D

a) Do C là điểm chính giữa cung AB nên AC = BC

Xét tam giác ACN và tam giác BCM có:

AC = BC (cmt)

AN = BM (gt)

\(\widehat{CAN}=\widehat{MBC}\)  (Hai góc nội tiếp cùng chắn cung CM)

\(\Rightarrow\Delta ACN=\Delta BCM\left(c-g-c\right)\)

b) Ta thấy \(\Delta ACN=\Delta BCM\Rightarrow CN=CM\)

Vậy tam giác CMN cân tại C.

Lại có \(\widehat{CMN}=\frac{\widebat{AC}}{2}=\frac{90^o}{2}=45^o\)

Vậy thì tam giác CMN cân, có góc ở đáy bằng 45o nên CMN là tam giác vuông cân.

c) Do DC//AM nên \(\widebat{DA}=\widebat{CM}\)

\(\Rightarrow\widebat{DM}=\widebat{CM}+\widebat{DC}=\widebat{AD}+\widebat{DC}=\widebat{AC}=90^o\)

\(\Rightarrow\widehat{DAM}=\frac{\widebat{DM}}{2}=45^o=\widehat{CNM}\)

Chúng lại ở vị trí đồng vị nên CN // AD.

Xét tứ giác ANCD có DC // AN; AD // CN nên ANCD là hình bình hành (dấu hiệu nhận biết).

6 tháng 1 2018

sao bn đăng nhìu thế chỗ này là chỗ học tập mà sao bn lại đăng những thứ thế những cái đó lúc nào rỗi bn hãy đăng nhé

6 tháng 1 2018

mình không quan tâm những gì về bạn, nhưng bạn vào đây bạn phải chấp hành luật. Nếu bạn vẫn tiếp tục spam hoặc gửi câu hỏi chống chế mà vẫn có nội dung spam thì coi chừng

6 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ca+a^2\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

\(\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}=VP\)

6 tháng 1 2018

Hoặc có thể dùng AM-GM

6 tháng 1 2018

Áp dụng BĐT cô-si, ta có 

\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2.\frac{1}{a^2}}=2\)

Tương tự, ta có \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\)

dấu= xảy ra <=>\(a^2=b^2=c^2=1\)

=>\(a^{2012}=b^{2012}=c^{2012}=1\Rightarrow a^{2012}+b^{2012}+c^{2012}=3\left(ĐPCM\right)\)

^_^

1 tháng 1 2019

tự làm