Tìm nghiệm nguyên của phương trinh
1!+2!+3!+...+x!=y^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
phân tích gt sau đó suy ra x+y+x=0
từ đây tính đc x+y=? y+z=? x+z=?
ta được kết quả là'; -2006
Xét \(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+2xy+y^2-xy-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
TH1:\(x+y+z=0\)
\(\Rightarrow x+y=-z;y+z=-x;z+x=-y\left(1\right)\)
Thay (1) vô pt cần tính:
\(\frac{2016xyz}{-z.-x.-y}=\frac{2016xyz}{-\left(xyz\right)}=-2016\)
TH2:\(x^2+y^2+z^2-xy-yz-xz=0\)
Nhân 2 vế với 2
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
Do VT dương
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-z\right)^2=0\\\left(y-z\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x-y=0\\x-z=0\\y-z=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=z\\y=z\end{cases}}\Rightarrow x=y=z\)
Thay y,z ở pt cần tính là x
\(\Rightarrow\frac{2016x.x.x}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{2016x^3}{2x.2x.2x}=\frac{2016x^3}{8x^3}=\frac{2016}{8}=252\)
Vậy pt có thể = -2016 khi x + y + z = 0
pt có thể = 252 khi \(x^2+y^2+z^2-xy-xz-yz=0\)
Ta có bđt \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) (1)
Thật vậy \(\left(1\right)\Leftrightarrow2a^2+2b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Áp dụng bđt (1) ta đc
\(A=x^2+y^2\)
\(\Rightarrow2A=2\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra <=> x = y = 1
Vậy .............
Ta có: \(x+y=2\Rightarrow y=2-x\)
Suy ra: \(A=x^2+y^2=x^2+\left(2-x\right)^2=x^2+4-4x+x^2=2x^2-4x+4\)
\(=2\left(x^2-2x+2\right)=2\left(x^2-2x+1\right)+2=2\left(x-1\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow2\left(x-1\right)^2\ge0\left(\forall x\right)\)
\(\Rightarrow A=2\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(\Rightarrow y=2-x=2-1=1\)
Vậy Amin = 2 khi và chỉ khi x = y = 1
Từ \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\frac{y}{z-x}-\frac{z}{x-y}\)
\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}\)
\(\Leftrightarrow\frac{x}{y-z}=\frac{y\left(y-x\right)+z\left(x-z\right)}{\left(x-z\right)\left(y-x\right)}\)
\(\Leftrightarrow\frac{x}{y-z}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)}\)
\(\Leftrightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)
C/m tương tự đc \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+xy-x^2}{\left(x-z\right)\left(y-z\right)\left(y-z\right)}\)
\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-xz+zy-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)
Khi đó \(Q=\frac{y^2-xy+xz-z^2+z^2-yz+xy-x^2+x^2-xz+yz-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}=0\)
Vậy Q=0
⇔3x2+2y2+2z2+2yz=2⇔3x2+2y2+2z2+2yz=2
⇒2≥3x2+2y2+2z2+y2+z2⇒2≥3x2+2y2+2z2+y2+z2
⇔2≥3(x2+y2+z2)⇔2≥3(x2+y2+z2)
Có: (x+y+z)2≤3(x2+y2+z2)≤2(x+y+z)2≤3(x2+y2+z2)≤2
⇒⇒A2≤2A2≤2 ⇔A∈[−√2;√2]⇔A∈[−2;2]
minA=-1⇔⇔{x+y+z=−√2x=y=z{x+y+z=−2x=y=z ⇒x=y=z=−√23⇒x=y=z=−23
maxA=1⇔{x+y+z=√2x=y=z⇔{x+y+z=2x=y=z ⇒x=y=z=√23
Mình nghĩ y^2 chứ nhỉ :[
khhong bạn ạ. Đề là y^3 , đề y^2 mik giải đc rồi nhé