giải giúp mình câu này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian làm riêng để hoạn thành công việc lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{18}\\\frac{6}{a}+\frac{8}{b}=\frac{2}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{45}\\\frac{1}{b}=\frac{1}{30}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=45\\b=30\end{cases}}\left(tm\right)\)
Vậy ...
Gọi thời gian mà đội 1 làm một mình xong cv là x (ngày) x > 0
Gọi thời gian mà đội 2 làm một mình xong cv là y (ngày) y > 0
Một ngày cả hai đội làm được 1/x + 1/y = 1/12 cv (1)
Nếu làm riêng 1 mình đội 1 nhanh hơn đội 2 là 7 ngày nên: x + 7 = y (2)
Giải hệ 2 pt trên ta được x = 21, y = 28
Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)
\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)
Lại có \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)
=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky)
Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)
Đặt x + y = a ; y + z = b ; x + z = c
Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)
=> \(P\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x = y = z
bài 8 : bỏ dấu hoặc rồi tính
a;( 17 - 299) + ( 17 - 25 + 299)
\(\widehat{BAC}=60^0\Rightarrow\widehat{BOC}=120^0\)
\(BC=\sqrt{2R^2-2R^2.\cos120^0}=R\sqrt{3}=2\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.3.2\sqrt{3}=3\sqrt{3}\left(cm^2\right)\)
\(\left(x-2\right).\left(x+2\right)=1\)
\(\Leftrightarrow x^2-4=1\)
\(\Leftrightarrow x^2=5\)
\(\Leftrightarrow x=\pm\sqrt{5}\)
mình giải đến đây thôi,phần đằng sau mk ko hiểu đề bạn viết sai sai ở đâu ý
Ta viết lại bất đẳng thức cần chứng minh là:
\(\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{b}{\left(a+b\right)\left(c+a\right)}+\frac{c}{\left(c+a\right)\left(a+b\right)}\ge\frac{3}{4}\)
Sử dụng kĩ thuật thêm-bớt trong bất đẳng thức Cô si ta được:
\(\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{a\left(a+c\right)}{8}+\frac{a\left(b+c\right)}{8}\ge\frac{3a}{4}\)
\(\Rightarrow\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{a^2+ab+2ac}{8}\ge\frac{3a}{4}\)
Áp dụng tương tự ta được:
\(\frac{b}{\left(a+b\right)\left(c+a\right)}+\frac{b^2+bc+2ab}{8}\ge\frac{3b}{4}\)
\(\frac{c}{\left(b+c\right)\left(a+b\right)}+\frac{c^2+ca+2bc}{8}\ge\frac{3c}{4}\)
Gọi vế trái của bất đẳng thức là A khi đó cộng các vế bất đẳng thức trên ta được:
\(A+\frac{a^2+ab+2ac}{8}+\frac{b^2+bc+2ab}{8}+\frac{c^2+ca+2bc}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
Hay: \(A\ge\frac{9}{4}-\frac{\left(a+b+c\right)^2+\left(ab+bc+ca\right)}{8}\)
\(\ge\frac{9}{4}-\frac{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{a}}{8}=\frac{3}{4}\)
Đến đây bài toán được chứng minh xong.
Áp dụng bất đẳng thức Cô si nhưng tình huống này ta bình phương hai vế trước.
Đặt \(A=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\), khi đó ta được:
\(A^2=\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\)
\(=\frac{x^4}{y^2}+\frac{y^4}{z^2}+\frac{z^4}{x^2}+2\left(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\right)\)
Ta chú ý cách ghép cặp sau:
\(\frac{x^4}{y^2}=\frac{x^2y}{z}+\frac{x^2y}{x}+z^2\ge4x^2\)
\(\frac{y^4}{z^2}+\frac{y^2z}{x}+\frac{y^2z}{x}+x^2\ge4y^2\)
\(\frac{z^4}{x^2}=\frac{z^2x}{y}+\frac{z^2x}{y}+y^2\ge4z^2\)
Cộng theo vế các bất đẳng thức trên ta được:
\(A^2+\left(x^2+y^2+z^2\right)\ge4\left(x^2+y^2+z^2\right)\Leftrightarrow A^2\ge9\Leftrightarrow A\ge3\)hay:
\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge3\)
Vậy bất đẳng thức đã được chứng minh, đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
J vậy bn