K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

\(A=a^4-2a^3+3a^2-4a+5\)

   \(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

    \(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu "=" xảy ra <=>  a = 1

Vậy .......

8 tháng 1 2019

bạn cứ dùng hệ quả định lí ta-lét là được

không bao giờ Toán bằng tuổi Vui nha !!!

8 tháng 1 2019

never

8 tháng 1 2019

x=-0,44

8 tháng 1 2019

\(x+\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+3}{4}=1\)

\(\Rightarrow\frac{12x}{12}+\frac{6x+6}{12}+\frac{4x+8}{12}+\frac{3x+9}{12}=\frac{12}{12}\)

\(\Rightarrow25x+23=12\)

\(\Rightarrow x=\frac{-11}{25}\)

8 tháng 1 2019

Áp dụng BĐT AM-GM ta có:

\(1=\frac{3}{x}+\frac{2}{y}\ge2.\sqrt{\frac{6}{xy}}\)

\(\Leftrightarrow1^2\ge4.\frac{6}{xy}\)

\(\Leftrightarrow1\ge\frac{24}{xy}\)

\(\Leftrightarrow xy\ge24\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{2}{y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)

Vậy \(xy_{min}=24\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)

8 tháng 1 2019

T nghĩ ra câu b rồi nhé Pain,bớt xạo lz!

b) Từ \(\frac{3}{x}+\frac{2}{y}=1\),ta có: \(x+y=1\left(x+y\right)=\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\)

Áp dụng BĐT Bunhiacopxki,ta có: \(\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\ge\left(\sqrt{\frac{3}{x}.x}+\sqrt{\frac{2}{y}.y}\right)\)

\(=\left(\sqrt{3}+\sqrt{2}\right)^2=5+2\sqrt{6}\)

Vậy \(Min_{x+y}=5+2\sqrt{6}\Leftrightarrow\hept{\begin{cases}x=3+\sqrt{6}\\y=2+\sqrt{6}\end{cases}}\)