K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

gọi độ dài ba cạnh của tam giác lần lượt là a,b,c

theo đề ra ta có :

a/2=b/3=c/5 và a+b+c= 93

theo tính chất dãy tỉ số bằng nhau ta có:

a/2=b/3=c/5=a+b+c/2+3+5= 93/10=9,3

a/2=9,3suy ra a=9,3.2=18,6

b/3 = 9,3 suy ra b=9.3.3= 27.9

c/5 = 9,3 suy ra c = 9,3 . 5 = 46,5

vậy độ dài ba cạnh tam giác lần lượt là 18,6 ; 27.9 ; và 46,5 

chúc học tốt nha

Số số hạng của dãy số trên :

     ( 99 - 1 ) : 1 + 1 = 99 ( số hạng )

Tổng của dãy số trên :

     ( 1 + 99 ) . 99 : 2 = 4950 

Đáp số : 4950

11 tháng 11 2019

b+b=1+2+3+...+99+99+98+97+...+1

=>2b=100.99

=>b=50.99

=>b=4950

11 tháng 11 2019

a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2=\sqrt{25}+\sqrt{25}-\sqrt{9}-\sqrt{9}\)

                                                                                                                    \(=5+5-3-3\) 

                                                                                                                    \(=4\)

c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2=\sqrt{100}+10.5\)

                                                                \(=10+10.5\)

                                                                \(=10+50\)

                                                                \(=60\)

Học tốt nha^^

11 tháng 11 2019

còn câu b 

11 tháng 11 2019

a, 4x2 - 9 = 0 => (2x)2 = 9 => 2x = 3 hoặc 2x = -3 => x = 3/2 hoặc x = -3/2

b, 2x2 + 0,36 = 1 => 2x2 = 0,64 => x2 = 0,32 = 8/25 => \(\orbr{\begin{cases}x=\sqrt{\frac{8}{25}}\\x=-\sqrt{\frac{8}{25}}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2\sqrt{2}}{5}\\x=\frac{-2\sqrt{2}}{5}\end{cases}}\)

c, \(\frac{5}{12}.\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)

\(\Rightarrow\frac{5}{12}.\sqrt{x}=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}\)

\(\Rightarrow\sqrt{x}=\frac{1}{2}\div\frac{5}{12}\)

\(\Rightarrow\sqrt{x}=\frac{6}{5}\)

\(\Rightarrow x=\left(\frac{6}{5}\right)^2=\frac{36}{25}\)

d, 3x2 + 7 = -4 => 3x2 = -4 - 7 => 3x2 = -11 => x2 = -11/3 (vô lý) => x ∈ Ø

11 tháng 11 2019

Cách 1:

a, Ta  có: \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)

Vì 18 > 12 \(\Rightarrow\sqrt{18}>\sqrt{12}\)\(\Rightarrow3\sqrt{2}>2\sqrt{3}\)

b, Ta có: \(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)\(3\sqrt{4}=\sqrt{9.4}=\sqrt{36}\)

Vì 48 > 36 \(\Rightarrow\sqrt{48}>\sqrt{36}\)\(\Rightarrow4\sqrt{3}>3\sqrt{4}\)

Cách 2:

Đặt \(A=2\sqrt{3}\)\(\Rightarrow A^2=\left(2\sqrt{3}\right)^2=4.3=12\)

      \(B=3\sqrt{2}\)\(\Rightarrow B^2=\left(3\sqrt{2}\right)^2=9.2=18\)

Vì 12 < 18 => A2 < B2 => A < B 

b, Đặt \(A=4\sqrt{3}\)\(\Rightarrow A^2=\left(4\sqrt{3}\right)^2=16.3=48\)

\(B=3\sqrt{4}\)\(\Rightarrow B^2=\left(3\sqrt{4}\right)^2=9.4=36\)

Vì 48 > 36 => A2 > B2 => A > B

Bình Tất cả lên

a)  2sqrt(3) < 3sqrt(2)

11 tháng 11 2019

a, Vì x, y tỉ lệ thuận với 2; 5 

 \(\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

Do đó: \(\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{5}=3\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=15\end{cases}}\)

Vậy...

Vì x, y, z tỉ lệ thuận với 8; 14; 20

\(\Rightarrow\frac{x}{8}=\frac{y}{14}=\frac{z}{20}\)\(\Rightarrow\frac{2x}{16}=\frac{3y}{42}=\frac{4z}{80}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{16}=\frac{3y}{42}=\frac{4z}{80}=\frac{2x+3y+4z}{16+42+80}=\frac{69}{138}=\frac{1}{2}\)

Do đó: \(\hept{\begin{cases}\frac{x}{8}=\frac{1}{2}\\\frac{y}{14}=\frac{1}{2}\\\frac{z}{20}=\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=7\\z=10\end{cases}}\)

Vậy...