K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

áp dụng công thức (a-b)^5= a^5 - 5a^4b + 10a^3b^2 - 10a^2b^3 + 5ab^4 - b^5 

15 tháng 1 2019

ae giải ra dùm mik vs ạ

15 tháng 1 2019

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\frac{m^2.\left(x+2-x+2\right)\left(x+2+x-2\right)}{8}-4x=m^2-2m+1+6m+3\)

\(\frac{8m^2x}{8}-4x=m^2+4m+4\)

\(x.\left(m-2\right)\left(m+2\right)=\left(m+2\right)^2\)

+) với m = 2 thì 0x = 4 ( vô nghiệm )

+) với m = -2 thì 0x = 0 ( vô số nghiệm )

+) với m \(\ne\)2 và -2 thì x có 1 nghiệm \(\frac{m+2}{m-2}\)