cho 2 đường tròn tâm (O) và (O') cắt nhau tại A và B gọi CD là tiếp tuyến của 2 đường tròn , C thuộc đường tròn (0), D thuộc đường tròn (O').Gọi K là tâm của đường tròn noại tiếp tam giác BCD . Gọi E là giao điểm thứ 2 của AB và đường tròn (K).CMR: ACED là hbn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta=\left(m-2\right)^2-4\left(-6\right)=\left(m-2\right)^2+24>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-6\end{cases}}\)
Ta có : x1 là nghiệm PT(1) thay vào ta được ( mình sửa luôn đề nhé)
\(\left(m-2\right)x_1+6-x_1x_2+\left(m-2\right)x_2=16\)
\(\Leftrightarrow\left(m-2\right)\left(x_1+x_2\right)-x_1x_2=10\)
Thay vào ta được \(\left(m-2\right)^2-\left(-6\right)=10\Leftrightarrow\left(m-2\right)^2=4\)
TH1 : \(m-2=2\Leftrightarrow m=4\)
TH2 : \(m-2=-2\Leftrightarrow m=0\)
b, 2 nghiệm cùng dấu âm
\(\hept{\begin{cases}\Delta\ge0\\S< 0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-2\right)^2+24\ne0\left(luondung\right)\\m-2< 0\\-6>0\left(voli\right)\end{cases}}}\)
Vậy ko giá trị m tm 2 nghiệm cùng âm
vì \(x+y+z=0\) \(\Rightarrow\)\(x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=-z^3\)\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=-3xy.\left(x+y\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\) do \(x+y=-z\)
\(\Rightarrow\left(x^3+y^3+z^3\right).\left(x^2+y^2+z^2\right)=3xyz.\left(x^2+y^2+z^2\right)\)
\(\Rightarrow3xyz.\left(x^2+y^2+z^2\right)=x^5+y^5+z^5+x^3.\left(y^2+z^2\right)+y^3.\left(x^2+z^2\right)+z^3.\left(x^2+y^2\right)\)
lại có: \(x^2+y^2=\left(x+y\right)^2-2xy=z^2-2xy\)
tương tự thì: \(y^2+z^2=x^2-2yz\)
\(z^2+x^2=y^2-2xz\)
vì vậy nên \(3xyz.\left(x^2+y^2+z^2\right)=x^5+y^5+z^5+x^3.\left(x^2-2yz\right)+y^3.\left(y^2-2xz\right)+z^3.\left(z^2-2xy\right)\)
\(\Rightarrow3xyz.\left(x^2+y^2+z^2\right)=2x^5+2y^5+2z^5-2xyz.\left(x^2+y^2+z^2\right)\)
\(\Rightarrow5xyz.\left(x^2+y^2+z^2\right)=2.\left(x^5+y^5+z^5\right)\)
đpcm
VÌ \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^5=-z^5\)
\(\Leftrightarrow x^5+y^{^5}+5\left(x^4y+xy^4+2x^3y^2+2x^2y^3\right)=-z^5\)
\(\Leftrightarrow x^5+y^{^5}+z^5+5xy\left(x^3+y^3+2x^3y^2+2x^2y^3\right)=0\)
\(\Leftrightarrow x^5+y^{^5}+z^5+5xy\left(x+y\right)+\left(x^2-xy+y^2+2xy\right)=0\)
\(\Leftrightarrow x^5+y^{^5}+z^5-5xyz\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow x^5+y^{^5}+z^5=5xyz\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(2x^2+2xy+2y^2\right)\)
\(\Leftrightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+\left(x+y\right)^2+y^2\right)\)
\(\Leftrightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)Vì (x+y=-z)
HT
Từ các cặp tam giác đồng dạng ta có:
\(BE=\frac{AB^2}{BC};CD=\frac{BC^2}{CA};AF=\frac{CA^2}{AB}\)
\(\Rightarrow AF+BE+CD=\frac{AB^2}{BC}+\frac{BC^2}{CA}+\frac{CA^2}{AB}\ge\frac{\left(AB+BC+CA\right)^2}{AB+BC+CA}=C_{ABC}\)
Dấu bằng xảy ra khi \(\frac{AB}{BC}=\frac{BC}{CA}=\frac{CA}{AB}=\frac{AB+BC+CA}{BC+CA+AB}=1\) hay tam giác ABC đều.
jjjjjjjqqqqqqqqaaaaaaaaooooooooooyyyyyyyyyyrrrrrrriggigigigigiiggigigigggigiigigigigigiggigigi
`Answer:`
\(\hept{\begin{cases}6x^2+3xy-9y^2=-40\left(1\right)\\2x+3y=8\left(2\right)\end{cases}}\)
`(1)<=>3(2x^2+xy-3y^2)=-40`
`<=>3(x-y)(2x+3y)=-40`
`<=>3(x+y).8=40` (Theo `(2)`)
`<=>x-y=-5/3(3)`
Từ `(2)(3)=>`\(\hept{\begin{cases}2x+3y=8\\x-y=-\frac{5}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+3y=8\\3x-3y=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=3\\x-y=-\frac{5}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{3}{1}\end{cases}}\)
Vậy `x+y=3/5+3/1=\frac{43}{15}`
Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:
\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)
Vậy ta cần chứng minh:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Vậy bất đẳng thức ban đầu được chứng minh.
ĐK: \(x,y\ne0\).
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\).
Hệ phương trình trở thành:
\(\hept{\begin{cases}9a+4b=\frac{23}{10}\\3a+b=\frac{7}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}9a+4b=\frac{23}{10}\\9a+3b=\frac{21}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{1}{5}\\a=\frac{1}{6}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{5}\end{cases}}\)
Suy ra \(\hept{\begin{cases}x=6\\y=5\end{cases}}\)(thỏa mãn)