Một hội trường có 500 ghế ngồi, người ta xếp chúng thành các dãy có số ghế như nhau. Nếu mỗi dãy có thêm 3 ghế và bớt đi 3 dãy thì số ghế trong hội trường vẫn phải bổ sung thêm 6 chiếc. Hỏi lúc đầu người ta định xếp bao nhiêu dãy ghế?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


gọi số thứ 1 là x ĐK x,y >0
--------------2----y
do tỉ số giữa 2 số là 3/5 => 5x=3y (1)
số thứ 1 chia 9 bé hơn số thứ 2 chia 6 là 3 đơn vị nên ta có phương trình
y/6 - x/9 = 3 (2)
từ (1) và (2) ta có hệ phương trình
........
x=18 y=30
vậy ........

\(\frac{2x+1}{89}+\frac{2x+4}{86}+\frac{2x+8}{82}+3=0\)
\(\frac{2x+1}{89}+1+\frac{2x+4}{86}+1+\frac{2x+8}{82}+1-3+3=0\)
\(\frac{2x+90}{89}+\frac{2x+90}{86}+\frac{2x+90}{82}=0\)
\(\left(2x+90\right)\left(\frac{1}{89}+\frac{1}{86}+\frac{1}{82}\right)=0\)
mà \(\frac{1}{89}+\frac{1}{86}+\frac{1}{82}\ne0\)
\(\Rightarrow2x+90=0\)
\(\Rightarrow2x=-90\)
\(\Rightarrow x=-45\)
Vậy \(x=-45\)
@Lam Ngo Tung dòng 2 công mỗi phân thức thêm 1 rồi trừ đi 3 sao cộng tiếp với 3 thế :v

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x\pm2=0\\x^2-10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x^2=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\left|\sqrt{10}\right|\end{cases}}\) (cho x + 2 và x - 2 mình gộp chung cho gọn,bạn làm nhớ tách ra nhé)

Dự đoán đẳng thức xảy ra tại \(a=b=c=\sqrt{3}\)
Ta có: \(\sqrt{a^2+1}=\sqrt{\frac{1}{4}}.\sqrt{4\left(a^2+1\right)}\le\sqrt{\frac{1}{4}}\left(\frac{4+a^2+1}{2}\right)=\frac{5+a^2}{4}\)
Thiết lập hai bđt còn lại tương tự và cộng theo vế:
\(VP\le3+\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)\)\(=\frac{27+a^2+b^2+c^2}{4}\)
Ta chỉ cần chứng minh: \(ab+bc+ca\ge\frac{27}{4}+\frac{a^2+b^2+c^2}{4}\)
Đến đây chưa nghĩ ra =((
Lạy trời cho con đừng gặp ngõ cụt như nãy nx,làm mà cứ ngõ cụt chán ~v
Lời giải:
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\) (do a,b,c dương nên a + b + c > 0 tức là abc > 0)
Lại có: \(1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\Rightarrow VT=ab+bc+ca\ge9\) (1)
Ta sẽ c/m \(VP=3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le9\)
\(\Leftrightarrow A=\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le6\)
Thật vậy: \(A=\frac{1}{2}\left[\sqrt{4\left(a^2+1\right)}+\sqrt{4\left(b^2+1\right)}+\sqrt{4\left(c^2+1\right)}\right]\)
\(\le\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)=\frac{15+a^2+b^2+c^2}{4}\)
Lại gặp ngõ cụt nữa r,=((Ai đó giúp em vs!!!

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Rightarrow\left(x-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2=\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow x=y=1=-1\)
Forever Miss You : có cách này nhanh hơn =))
Áp dụng BĐT AM-GM ta có:
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\ge2.\sqrt{\frac{x^2.1}{x^2}}+2.\sqrt{\frac{y^2.1}{y^2}}=2+2=4\)
Mà \(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{x^2}\\y^2=\frac{1}{y^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=1\\y^4=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)

\(\left(2x-3\right)^2=\left(2x-3\right)\left(x-1\right)\)
\(\left(2x-3\right)^2-\left(2x-3\right)\left(x-1\right)=0\)
\(\left(2x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,5\\x=2\end{cases}}\)
Vay \(x\in\left\{1,5;2\right\}\)
\(\left(2x-3\right)^2=\left(2x-3\right)\left(x-1\right)\)
\(\Leftrightarrow4x^2-9-2x^2+3x-3=0\)
\(\Leftrightarrow2x^2+3x-12=0\)
\(\Leftrightarrow2x^2+3x=12\)
Từ đây bạn làm nốt nhé
Nếu sai thì thông cảm cho mình nha

- Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)²
- ↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)²
- ↔ (ad)² + (bc)² ≥ 2abcd
- ↔ (ad)² - 2abcd + (bc)² ≥ 0
- ↔ (ad - bc)² ≥ 0 luôn đúng
- Dáu "='' khi ad = bc
BĐT Bunhiacopxki:
Áp dụng cho 6 số(1,1,1,a,b,c)
\(\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2\)
Chứng minh:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right).\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2axby+b^2y^2\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow2axby\le a^2y^2+b^2x^2\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( đpcm )
Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).
Ta có phương trình: ab=500ab=500 và
⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25
Vậy lúc đầu người ta định xếp 2525 dãy ghế.