xét 2 số thực dương a và b sao cho \(^{a^2+b^2\le2}\)
chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\)
ae ai bt tl giúp tôi nha tôi đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu BĐT ngược 1 chút \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Xét hiệu 2 vế của BĐT
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}=\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\)
\(=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\ge0\)
=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{2}{1+ab}\)
Dấu "=" xảy ra <=> a=b=1
a/ ĐKXĐ: \(x\ne3;-3;2\)
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{3-x}=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x^2-2x\right)+\left(3-6x\right)}\)
\(+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{-1}{x-3}\)
Đến đây bạn tự quy đồng nhé! Chúc sớm giải được. Cố lên!!!!!
30 phút = 1/2 giờ
Gọi độ dài quãng đường AB là x(km) (x > 0)
Ta có: \(\frac{x}{30}-\frac{x}{40}=\frac{1}{2}\Leftrightarrow\frac{x}{120}=\frac{1}{2}\Leftrightarrow x=60\) (thỏa mãn)
Vậy độ dài quãng đường AB là 60 km.
từ đẳng thức: a^3+b^3+c^3=3abc
suy ra a=b=c hoặc a^2+b^2+c^2+ab+ac+bc=0
thay vào bt M
tìm được M=8 hoặc M=-1
hok tốt
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+3a^2b+3b^2a+c^3-3a^2b-3b^2a-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2=ab+bc+ca\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\).Với a+b+c=0 thì \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Rightarrow}M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=-1\)
Với a=b=c thì \(M=8\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\Leftrightarrow ab+bc+ac=1\)
\(A=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow1=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).abc\Leftrightarrow1=bc+ac+ab\)
\(A=\left(bc+ac+ab+a^2\right)\left(bc+ac+ab+b^2\right)\left(bc+ac+ab+c^2\right)\)
\(A=\left[c\left(a+b\right)+a\left(a+b\right)\right]\left[c\left(a+b\right)+b\left(a+b\right)\right]\left[c\left(c+b\right)+a\left(c+b\right)\right]\)
\(A=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(A=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
Bài này chắc dùng phương pháp hạ bậc + chọn điểm rơi. :v
Lời giải:
Dự đoán dấu "=" xảy ra tại a = b = 1
Ta có: \(1+a^2\ge2a;1+b^2\ge2b\) (cô si)
Suy ra \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{1}{2a}+\frac{1}{2b}\) (1)
Áp dụng BĐT Am-Gm (Cô si),ta có: \(ab\le\frac{a^2+b^2}{2}\)
Lại có: \(\frac{2}{1+ab}\ge\frac{2}{1+\frac{a^2+b^2}{2}}\ge\frac{2}{1+\frac{2}{2}}=1\) (2)
Ta sẽ c/m: \(\frac{1}{2a}+\frac{1}{2b}\le1\Leftrightarrow\frac{1}{a}+\frac{1}{b}\le2\)
Chứng minh tiếp đi:v,bí r:v
: ở đâu có nhãn xanh thế tth?