K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

Câu hỏi của NOO PHƯỚC THỊNH - Toán lớp 8 - Học toán với OnlineMath

31 tháng 1 2019

>: nhấn vô coi câu tl rồi bt( câu b ý) 

31 tháng 1 2019

Theo mk nghĩ thôi nhé, mk viết đáp số thôi nha

\(a,b,c=0\)

31 tháng 1 2019

Trong 3 số a,b,c luôn tồn tại hai số cùng \(\ge\frac{1}{2}\) hoặc \(\le\frac{1}{2}\)Giả sử hai số đó là a và b

Ta có:\(c\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow c\left(4ab-2a-2b+1\right)\ge0\)

\(\Leftrightarrow4abc-2ac-2bc+c\ge0\Leftrightarrow4abc+c\ge2ac+2bc\)

Ta lại có:\(1=a^2+b^2+c^2+2abc\ge2ab+2abc+c^2\)

\(\Leftrightarrow1-c^2\ge2ab\left(c+1\right)\Leftrightarrow1-c\ge2ab\Leftrightarrow1\ge2ab+c\)\(\ge2\sqrt{2abc}\)

\(\Rightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\).Từ \(a^2+b^2+c^2+2abc=1\Rightarrow\)

\(2+c=2a^2+2b^2+2c^2+4abc+c\)\(\ge2a^2+2b^2+2c^2+2ac+2bc\)

\(\Leftrightarrow1+1+c-a^2-b^2-c^2+2ab\ge a^2+b^2+c^2+2ab+2ac+2bc\)

\(\Leftrightarrow\left(a+b+c\right)^2\le1+2abc+c+2ab\le1+\frac{1}{4}+1=\frac{9}{4}\)

\(\Rightarrow a+b+c\le\frac{3}{2}\).Nên GTLN của M là \(\frac{3}{2}\) khi \(a=b=c=\frac{1}{2}\)

31 tháng 1 2019

dễ

x2 + y2 + xy = x2y2

x2 + xy + y2 - x2y2 = 0

4x2 + 4xy + 4y2 - 4x2y2 = 0

( 4x2 + 8xy + 4y2 ) - ( 4x2y2 + 8xy + 1 ) = -1       ( thêm - 1 )

( 2x + 2y )2 - ( 2xy + 1 )2 = -1

( 2x + 2y - 2xy - 1 ) ( 2x + 2y + 2xy + 1 ) = -1

\(\Rightarrow\)\(\hept{\begin{cases}2x+2y-2xy-1=1\\2x+2y+2xy+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y-2xy-1=-1\\2x+2y+2xy+1=1\end{cases}}\)

suy ra tìm đc ( x; y ) \(\in\){ ( 0 ; 0 ) ; ( -1 ; 1 ) ; ( 1 ; -1 ) }

SKT-STT giúp mk bài tập này vs 

Tìm các số nguyên x dể bt \(A=\frac{x^5+1}{x^3+1}\)   có giá trị là số nguyên

31 tháng 1 2019

máy tính mik khó viết nhưng bài này có mẫu chung nên dễ làm mà

bn cứ đưa mẫu ra có x-8 chung đó

sau đó tính tiếp theo bt là ra mà

31 tháng 1 2019

bạn ơi bạn làm chi tiết ra ik mk thư rôi nhưng không đc

31 tháng 1 2019

\(\frac{3}{a+2b}=\frac{1}{3}.\frac{9}{a+b+b}\le\frac{1}{3}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)

Tương tự:\(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)\)

Cộng theo vế ta được:

\(\frac{3}{a+2b}+\frac{3}{b+2c}+\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

10 tháng 2 2019

Số chính phương đó là 3136 . Hok tốt