Xác định k và m để hai đường thẳng sau đây trùng nhau:
y = kx + (m – 2) (k ≠ 0); y = (5 – k)x + (4 – m) (k ≠ 5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có b ≠ b' (vì 2 ≠ 1)
Nên hai đường thẳng y = (a – 1)x + 2 và y = (3 – a)x + 1 song song với nhau khi và chỉ khi:
a – 1 = 3 – a
=> a = 2 (thỏa mãn a ≠ 1 và a ≠ 3)
Vậy với a = 2 thì hai đường thẳng song song với nhau.
a) Hàm số y=(a–1)x+a(a≠1)y=(a–1)x+a(a≠1) là hàm số bậc nhất có đồ thị hàm số cắt trục tung
tại điểm có tung độ bằng y = 2 nên a = 2.
b) Hàm số y=(a–1)x+a(a≠1)y=(a–1)x+a(a≠1) là hàm số bậc nhất có đồ thị hàm số cắt trục hoành tại điểm có hoành độ x = -3 nên tung độ giao điểm này bằng 0.
Ta có:
0=(a–1)(–3)+a⇔–3x+3+a=0⇔–2a=–3⇔a=1,50=(a–1)(–3)+a⇔–3x+3+a=0⇔–2a=–3⇔a=1,5
c) Khi a = 2 thì ta có hàm số: y = x + 2
Khi a = 1,5 thì ta có hàm số: y=0,5x+1,5y=0,5x+1,5
* Vẽ đồ thị của hàm số y=x+2y=x+2
Cho x = 0 thì y = 2. Ta có: A(0;2)
Cho y = 0 thì x = -2. Ta có: B(-2;0)
Đường thẳng AB là đồ thị hàm số y=x+2y=x+2.
* Vẽ đồ thị của hàm số y=0,5x+1,5y=0,5x+1,5
Cho x = 0 thì y = 1,5. Ta có: C(0;1,5)
Cho y = 0 thì x = -3. Ta có : B(-3;0)
Đường thẳng CD là đồ thị hàm số y=0,5x+1,5y=0,5x+1,5
* Tọa độ giao điểm của hai đường thẳng .
Ta có: I thuộc đường thẳng y=x+2y=x+2 nên y1=x1+2y1=x1+2
I thuộc đường thẳng y=0,5x+1,5y=0,5x+1,5 nên y1=0,5x1+1,5y1=0,5x1+1,5
Suy ra:
x1+2=0,5x1+1,5⇔0,5x1=–0,5⇔x1=–1x1+2=0,5x1+1,5⇔0,5x1=–0,5⇔x1=–1
x1=–1⇒y1=–1+2=1x1=–1⇒y1=–1+2=1
Vậy tọa độ giao điểm của hai đường thẳng là I(-1;1).
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).
Hàm số nghịch biến khi 5 – k < 0 hay k < 5.
Kết hợp với điều kiện (**) ta được với k < 5 thì hàm số nghịch biến.
a, y= 5x - (2-x)k = 5x - 2k + k.x = (5+k)x - 2k
Vậy hàm số có hệ số a= 5+k. Khi đó:
+ Hàm số đồng biến a > 0 ⇔ 5 + k > 0 ⇔ k > -5
+ Hàm số nghịch biến a < 0 ⇔ 5 + k < 0 ⇔ k < -5.
Hai đường thẳng y = ax + b và y = a'x + b' (a, a' ≠ 0)
- Cắt nhau khi và chỉ khi a ≠ a'
- Song song với nhau khi và chỉ khi a = a', b ≠ b'
- Trùng nhau khi và chỉ khi a = a', b = b'
Đường thẳng song song Cho đường thẳng d có phương trình là y = a x + b ( a ≠ 0 ) y=ax+b(a≠0) và đường thẳng d' có phương trình là y = a ′ x + b ′ ( a ′ ≠ 0 ) y=a′x+b′(a′≠0). Khi đó d và d' song song khi và chỉ khi a = a ′ a=a′ và b ≠ b ′ b≠b′ Chú ý: nếu a=a' và b=b' thì d trùng d' 2. Đường thẳng cắt nhau Cho đường thẳng d có phương trình là y = a x + b ( a ≠ 0 ) y=ax+b(a≠0) và đường thẳng d' có phương trình là y = a ′ x + b ′ ( a ′ ≠ 0 ) y=a′x+b′(a′≠0). Khi đó d và d' cắt nhau khi và chỉ khi a ≠ a ′ a≠a′ Chú ý: nếu a ≠ a ′ a≠a′ và b=b' thì d cắt d' tại một điểm trên trục tung có tung độ là b
a) Hàm số đồng biến khi a > 0
b) Hàm số nghịch biến khi a < 0
Chúc bạn học tốt~
1. Định nghĩa
Hàm số bậc nhất là hàm số có công thức: y=ax+by=ax+b trong đó aa và bb là các số đã cho với a≠0,xa≠0,x là biến số.
2. Sự biến thiên
Hàm số bậc nhất y=ax+b(a≠0)y=ax+b(a≠0) có tập xác định D=RD=R, đồng biến trên RR nếu a>0a>0 và nghịch biến trên RR nếu a<0a<0.
Hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau khi và chỉ khi:
k = 5 – k (1) và m – 2 = 4 – m (2)
Từ (1) suy ra k = 2,5 (thỏa mãn điều kiện k ≠ 0 và k ≠ 5)
Từ (2) suy ra m = 3
Vậy với k = 2,5 và m = 3 thì hai đường thẳng trùng nhau.
Hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau khi và chỉ khi:
k = 5 – k (1) và m – 2 = 4 – m (2)
Từ (1) suy ra k = 2,5 (thỏa mãn điều kiện k ≠ 0 và k ≠ 5)
Từ (2) suy ra m = 3
Vậy với k = 2,5 và m = 3 thì hai đường thẳng trùng nhau.