1/2 +1/3+1/4+...+ 1/2023+ 1/2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do Oz là tia phân giác của góc xOy nên:
Oz sẽ cắt xOy thành hai góc bằng nhau
\(\Rightarrow\widehat{yOz}=\widehat{zOx}=\dfrac{\widehat{xOy}}{2}=\dfrac{30^o}{2}=15^o\)
Vậy: \(\widehat{yOz}=15^o\)
BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)
\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)
\(=\left|x-1\right|+\left|5-x\right|\)
Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)
Vậy: \(m_{min}=4\)
giá chiếc pizza rau củ sau khi đã giảm là:
139000x(100%-10%)=125100 (đồng)
giá chiếc pizza thập cẩm sau khi đã giảm là:
289000x(100%-10%)=260100 (đồng)
giá tiền bác lan phải trả là:
(125100+260100)x(100%-5%)=365940 (đồng)
bác lan được trả lại số tiền là:
500000-365940=134060(đồng)
a) \(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)
\(\Rightarrow\left(\dfrac{1}{3}\right)^m=\left(\dfrac{1}{3}\right)^4\)
\(\Rightarrow m=4\)
b) \(\dfrac{1}{9}\cdot27^n=3^n\)
\(\Rightarrow\dfrac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Rightarrow\dfrac{3^{3n}}{3^2}=3^n\)
\(\Rightarrow3^{3n-2}=3^n\)
\(\Rightarrow3n-2=n\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=1\)
c) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow2^{3-n}=2^1\)
\(\Rightarrow3-n=1\)
\(\Rightarrow n=2\)
d) \(32^n\cdot16^{-n}=1024\)
\(\Rightarrow\left(2^5\right)^n\cdot\left(2^4\right)^{-n}=2^{10}\)
\(\Rightarrow2^{5n-4n}=2^{10}\)
\(\Rightarrow2^n=2^{10}\)
\(\Rightarrow n=10\)
e) \(3^{-1}\cdot3^n+5\cdot3^{n-1}=162\)
\(\Rightarrow3^{n-1}+5\cdot3^{n-1}=162\)
\(\Rightarrow3^{n-1}\cdot6=162\)
\(\Rightarrow3^{n-1}=27\)
\(\Rightarrow3^{n-1}=3^3\)
\(\Rightarrow n-1=3\)
\(n=4\)
f) \(\left(n-\dfrac{2}{3}\right)^3=\dfrac{1}{27}\)
\(\Rightarrow\left(n-\dfrac{2}{3}\right)^3=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow n-\dfrac{2}{3}=\dfrac{1}{3}\)
\(\Rightarrow n=\dfrac{1}{3}+\dfrac{2}{3}\)
\(\Rightarrow n=1\)
Lời giải:
$a^2+ab=c^2+bc$
$\Rightarrow a(a+b)=c(b+c)\Rightarrow \frac{a+b}{c}=\frac{b+c}{a}(1)$
$a^2+ac=b^2+bc$
$\Rightarrow a(a+c)=b(b+c)\Rightarrow \frac{a+c}{b}=\frac{b+c}{a}(2)$
Từ $(1); (2)\Rightarrow \frac{a+b}{c}=\frac{b+c}{a}+\frac{c+a}{b}$
Áp dụng TCDTSBN:
$\frac{a+b}{c}=\frac{b+c}{a}+\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2(a+b+c)}{a+b+c}=2$
$\Rightarrow a+b=2c; b+c=2a; c+a=2b$
$\Rightarrow a+b-(b+c)=2c-2a$
$\Rightarrow a-c=2c-2a\Rightarrow 3a=3c\Rightarrow a=c$
$2b=c+a=a+a=2a\Rightarrow a=b$
Vậy $a=b=c$
Do đó:
$K=(1+\frac{a}{a})(1+\frac{a}{a})(1+\frac{a}{a})=(1+1)(1+1)(1+1)=8$
\(M=\dfrac{\left(8a-3b\right)\left(2a+b\right)-\left(2a-b\right)\left(2a-5b\right)}{4a^2-b^2}=\)
\(=\dfrac{16a^2+2ab-3b^2-4a^2+12ab-5b^2}{4a^2-b^2}=\)
\(=\dfrac{12a^2+14ab-8b^2}{4a^2-b^2}=\)
\(=\dfrac{4a^2+14ab-6b^2+8a^2-2b^2}{4a^2-b^2}=\)
\(=\dfrac{2\left(2a^2+7ab-3b^2\right)+2\left(4a^2-b^2\right)}{\left(4a^2-b^2\right)}=2\)
4072299/4048
cho mik câu trả lời cụ thể đc k bn