Ngày 4-6-1783, anh em nhà Mông-gôn-fi-ê (người Pháp) phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu có đường kính 11m. Hãy tính diện tích mặt khinh khí cầu đó (làm tròn kết quả đến chữ số thập phân thứ hai).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 ,
Áp dụng BĐT AM - GM ta có :
\(2a+b+c=\left(a+b\right)+\left(a+c\right)\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)
\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
còn lại
= > \(M\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+c\right)\left(b+a\right)}+\frac{1}{\left(c+a\right)\left(c+b\right)}\right)\)
\(\Leftrightarrow M< \frac{1}{4}.\frac{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow M\le\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)( theo AM - GM )
\(\Rightarrow M\le\frac{a+b+c}{2.8abc}=\frac{a+b+c}{16abc}\left(1\right)\)
Tiếp tục áp dụng BĐT AM - GM :
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\)
\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow3\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
\(\Rightarrow a+b+c\le3abc\left(2\right)\)
Từ ( 1 ) , ( 2 ) \(\Rightarrow M\le\frac{3abc}{16abc}=\frac{3}{16}\)\(M\le\frac{3}{16}< \frac{9}{16}\)
\(\Rightarrow M\le\frac{9}{16}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-\sqrt{x}}\right):\frac{\sqrt{x+1}}{3}\)
\(P=\left(\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}.\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\frac{3}{\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{3}{\sqrt{x}-1}\)
b)
Xét PT hoành độ giao điểm:
\(\dfrac{1}{2}x^2=\dfrac{1}{4}x+\dfrac{3}{2}\Leftrightarrow2x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x_1=2\Rightarrow y_1=2\\x_2=\dfrac{-3}{2}\Rightarrow y_2=\dfrac{9}{8}\end{matrix}\right.\)
Thay ........ vào T ta có
\(T=\dfrac{2+\dfrac{-3}{2}}{2+\dfrac{9}{8}}=\dfrac{4}{25}\)
Vẽ đồ thị hàm số y = x^2 (P) và y = x + 2 (D) trên cùng mặt phẳng tọa độ. Tìm tọa độ giao điểm của (P) và (D)
phương trình hoành độ giao điểm
\(x^2 = x+2\)
\(<=>x^2-x-2=0\)
\(<=>x=-1;y=2 hoặc x=2;y=4\)
vậy \(P\) cắt \(D\) tại\( 2\) điểm \(A(-1;2) B(2;4)\)
1)
aThay x=-1;y=3 vào đồ thị hàm số(*) ta được:
\(3=\left(m+2\right).\left(-1\right)^2\)
\(\Leftrightarrow m+2=3\)
\(\Leftrightarrow m=1\)
b)Thay x=\(\sqrt{2}\);y=-1 vào đồ thị hàm số (*) ta được:
\(-1=\left(m+2\right).\left(\sqrt{2}\right)^2\)
\(\Leftrightarrow2.\left(m+2\right)=-1\)
\(\Leftrightarrow2m+4=-1\)
\(\Leftrightarrow2m=-5\)
\(\Leftrightarrow m=-\frac{5}{2}\)
2)
Thay m=0 vào đồ thị hàm số (*) ta đươc: \(y=2x^2\)
Hoành độ giao điểm của đồ thị hàm số \(y=2x^2\)và đồ thị hàm số \(y=x+1\)là:
\(2x^2=x+1\)
\(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow2x^2-2x+x-1=0\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}}\)
\(TH1:x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\)vào đồ thị hàm số \(y=x+1\)ta được:
\(y=-\frac{1}{2}+1=\frac{1}{2}\)
Ta được điểm A\(\left(-\frac{1}{2};\frac{1}{2}\right)\)
\(TH2:x=1\)
Thay \(x=1\)vào đồ thị hàm số \(y=x+1\)ta được:
\(y=1+1=2\)
Ta được điểm \(B\left(1;2\right)\)
1)
Vì đồ thị hàm số (*) đi qua điểm A(-1;3) nên x=-1 và y=3. Thay x=-1 và y=3 vào hàm số (*) ta được:
f(-1)=(m+2).(-1)2=3 <=> m+2=3 ⇔m=1
Vậy với m=1 thì đt hàm số đã cho đi qua điểm A(-1;3).
2) Thay m=0 vào hàm số (*)
ta có: y=f(x)=2x2
+) Phương trình hoành độ giao điểm của hàm số y=f(x)=2x2 và y=x+1 là:
2x2 = x+1
⇔2x2 -x-1=0
\(\left\{{}\begin{matrix}x_1=1\Rightarrow y_1=2\\x_2=\dfrac{-1}{2}\Rightarrow y_2=\dfrac{1}{2}\end{matrix}\right.\)
Vậy đường thẳng y=x+1 và y=f(x)=2x2 có giao điểm là M(1;2) và N(\(\dfrac{-1}{2};\dfrac{1}{2}\))
Bạn tự vẽ hình :
a, Có : \(\widehat{ACB}+\widehat{BCx}=180^0\)
\(=>\frac{1}{2}ACB+\frac{1}{2}BCx=90^0\)
\(=>DCB+BCE=90^0\)
\(=>DCE=90^0\)
Tương tự \(\widehat{DBE}=90^0\)
Trong tứ giác \(BECD\)có : \(\widehat{DBE}+\widehat{DCE}=90^0+90^0=180^0\)
= > Tứ giác BECD nội tiếp
b, Tứ giác BECD nội tiếp nên
\(\widehat{DCB}=\widehat{DEB}\)( 2 góc nội tiếp cung chắn cung BD )
Xét \(\Delta DIC\)và \(\Delta BIE\)có :
\(\widehat{DCB}=\widehat{DEB}\left(cmt\right)\)
\(\widehat{DIC}=\widehat{BIE}\)( 2 góc đối đỉnh )
\(=>\Delta DIC~\Delta BIE\)
\(=>\frac{BI}{ID}=\frac{IE}{IC}\)
\(=>BI.IC=ID.IE\)
c, Vì E là giao điểm của 2 đường phân giác trong của góc B , C nên E cũng thuộc đường phân giác của góc A
= > AE là phân giác của góc A
Vì D là giao điểm của 2 đường phân giác các góc ngoài của góc B , C nên ta có D cách đều 2 cạnh AB , AC
= > D thuộc đường phân giác của góc A
= > A , E , D thẳng hàng
a)Thay m=-2 vào phương trình (1) ta được:
\(x^2+2x-2-1=0\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
Vậy....
b)Ta có:
\(\Delta=\left(-m\right)^2-4.1.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Có:\(\left(m-2\right)^2\ge0\forall m\)
\(\Rightarrow\Delta\ge0\forall m\)
Vậy Phương trình (1) luôn có nghiệm \(x_1,x_2\)với mọi giá trị của m
Gọi vận tốc thực của ca nô và vận tốc dòng nước lần lượt là \(x;y\left(x>y>0\right)\)
Vận tốc xuôi dòng của ca nô là \(x+y\left(km/h\right)\)và vận tốc ngược dòng là \(x-y\left(km/h\right)\)
Lần thứ nhất, thời gian ca nô đi xuôi dòng là \(\frac{54}{x+y}\left(h\right)\)và thời gian ca nô đi ngược dòng là \(\frac{63}{x-y}\left(h\right)\)
Vì tổng thời gian cả đi lẫn về của ca nô lần thứ nhất là 5 giờ nên ta có pt \(\frac{54}{x+y}+\frac{63}{x-y}=5\)(1)
Lần thứ hai, thời gian ca nô đi xuôi dòng là \(\frac{108}{x+y}\left(h\right)\)và thời gian ca nô đi ngược dòng là \(\frac{84}{x-y}\left(h\right)\)
Vì tổng thời gian cả đi lẫn về của ca nô lần thứ hai là 8 giờ nên ta có pt \(\frac{108}{x+y}+\frac{84}{x-y}=8\)(2)
Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{54}{x+y}+\frac{63}{x-y}=5\\\frac{108}{x+y}+\frac{84}{x-y}=8\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{54}{x+y}+\frac{63}{x-y}=5\\\frac{54}{x+y}+\frac{42}{x-y}=4\end{cases}}\)(*)
Đặt \(\hept{\begin{cases}\frac{54}{x+y}=a\\\frac{21}{x-y}=b\end{cases}}\left(a,b>0\right)\), khi đó (*) trở thành \(\hept{\begin{cases}a+3b=5\\a+2b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=2\end{cases}}\)(nhận)
\(\Rightarrow\hept{\begin{cases}\frac{54}{x+y}=2\\\frac{21}{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=27\\x-y=21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=24\\y=3\end{cases}}\)(nhận)
Vậy vận tốc thực của ca nô là 24 km/h và vận tốc dòng nước là 3 km/h
TL :
Bán kính của khinh khí cầu là :
11 . 11 = 121 ( m )
Diện tích của khinh khí cầu là :
3,14 . 121 = 379,94 (m2)
Đ/S : ....
Bán kính của khinh khí cầu là \(r=\frac{d}{2}=\frac{11}{2}\left(m\right)\)
Diện tích mặt khinh khí cầu đó là \(V=4\pi r^2=4\pi.\left(\frac{11}{2}\right)^2=4\pi.\frac{121}{4}=121\pi\approx380,13\left(m^2\right)\)