Rút gọn biểu thức
H= 4/(1-√3)-(√15+√3)/(1+√5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A ta có:
\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)
Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.
Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.
a) Tính độ dài cạnh AC
Vì tam giác vuông tại A, góc α là góc B, ta có:
tan(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}tan(α)=keˆˋđoˆˊi diện
Trong tam giác ABC vuông tại A:
tan(α)=BCAC\tan(\alpha) = \frac{BC}{AC}tan(α)=ACBC
Theo đề bài, tan(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125.
Do đó, ta có:
BCAC=512\frac{BC}{AC} = \frac{5}{12}ACBC=125
Từ đó suy ra:
BC=512ACBC = \frac{5}{12} ACBC=125AC
b) Tính độ dài cạnh BC
Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:
BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2
Đầu tiên, ta cần tính AC.
Biết rằng tan(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125, do đó ta có:
sin(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC sin(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC
Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:
BC=5kBC = 5kBC=5k
AC=12kAC = 12kAC=12k
Sử dụng định lý Pythagore:
BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2
(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2(5k)2=AB2+(12k)2
25k2=62+144k225k^2 = 6^2 + 144k^225k2=62+144k2
25k2=36+144k225k^2 = 36 + 144k^225k2=36+144k2
Từ đó, ta có:
AC=12k5AC = \frac{12k}{5}AC=512k
AC2=AB2+BC2AC^2 = AB^2 + BC^2AC2=AB2+BC2
(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2(12k)2=62+(5k)2
144k2=36+25k2144k^2 = 36 + 25k^2144k2=36+25k2
144k2−25k2=36144k^2 - 25k^2 = 36144k2−25k2=36
119k2=36119k^2 = 36119k2=36
k2=36119k^2 = \frac{36}{119}k2=11936
k=36119k = \sqrt{\frac{36}{119}}k=11936
k=6119k = \frac{6}{\sqrt{119}}k=1196
BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}BC=5k=5×1196=11930
AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}AC=12k=12×1196=11972
Chúng ta có thể tính toán lại bằng cách:
Suy ra: BC=512ACBC = \frac{5}{12} ACBC=125AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4AC=512×6=14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6BC=5×1.2=6
Suy ra:...
Sau 1 năm số tiền nhận được là:
\(100\cdot\left(1+7,2\%\right)=107,2\)(triệu đồng)
Sau 2 năm số tiền nhận được là:
\(107,2\cdot\left(1+7,2\%\right)=114,9184\)(triệu đồng)
a: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\) và \(MA\cdot MB=HM^2\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right);NA\cdot NC=NH^2\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\left(3\right);AB^2=BH\cdot BC;AC^2=CH\cdot BC\)
Từ (1) và (3) suy ra \(AM\cdot AB=HB\cdot HC\)
b: Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>\(HA^2=HM^2+HN^2\)
=>\(HB\cdot HC=MA\cdot MB+NA\cdot NC\)
d: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)
=>\(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
e: Xét ΔAHB vuông tại H có HM là đường cao
nên \(BM\cdot BA=BH^2\)
=>\(BM=\dfrac{BH^2}{BA}\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(CN\cdot CA=CH^2\)
=>\(CN=\dfrac{CH^2}{CA}\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(BC=\dfrac{AB\cdot AC}{AH}\)
\(BM\cdot CN\cdot BC=\dfrac{BH^2}{BA}\cdot\dfrac{CH^2}{CA}\cdot\dfrac{AB\cdot AC}{AH}\)
\(=\dfrac{BH^2}{AH}\cdot CH^2=\dfrac{\left(BH\cdot CH\right)^2}{AH}=\dfrac{AH^4}{AH}=AH^3\)
mà AH=MN(AMHN là hình chữ nhật)
nên \(BM\cdot CN\cdot BC=MN^3\)
a: \(\Delta=\left[2\left(m+1\right)\right]^2-4\cdot2\cdot m\)
\(=\left(2m+2\right)^2-8m=4m^2+8m+4-8m=4m^2+4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m+1\right)}{2}=-\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=\dfrac{m}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2< 2\\x_1\cdot x_2< 1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\left(m+1\right)< 2\\\dfrac{m}{2}< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>-2\\m< 2\end{matrix}\right.\)
=>-3<m<2
a)
\(\Delta=\left[2\left(m+1\right)\right]^2-4\cdot2\cdot m=4\left(m^2+2m+1\right)-8m\\ =4m^2+8m+4-8m=4m^2+4\ge4>0\forall x\)
=> Pt luôn có nghiệm với mọi m
b) Ta có: \(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1+x_2< 2\\x_1x_2< 1\end{matrix}\right.\)
Theo vi-ét: \(\left\{{}\begin{matrix}x_1x_2=\dfrac{m}{2}\\x_1+x_2=\dfrac{-2\left(m+1\right)}{2}=-\left(m+1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{2}< 1\\-\left(m+1\right)< 2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>-3\end{matrix}\right.\Rightarrow-3< m< 2\)
a: \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x-y-3x+y=4-5\\3x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\y=3x-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3x-5=-\dfrac{3}{2}-5=-\dfrac{13}{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy+3x-3y-9=xy-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\3x-3y=-3+9=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=y\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0=2\left(vôlý\right)\\x=y\end{matrix}\right.\)
vậy: Hệ vô nghiệm
a)
\(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3x-y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\-\dfrac{3}{2}-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{3}{2}-5=-\dfrac{13}{2}\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy+3x-3y-9=xy-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\3x-3y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-y=2\end{matrix}\right.\)
mà: 2 khác 0
=> Hpt vô nghiệm
\(H=\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\sqrt{3}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{-2}-\sqrt{3}\\ =-2\left(1+\sqrt{3}\right)-\sqrt{3}\\ =-2-2\sqrt{3}-\sqrt{3}\\ =-2-3\sqrt{3}\)
Cảm ơn bạn nhé