Cho tam giác nhọn ABC có góc A= 60 độ, đường cao BE, CF giao nhau tại H, phân giác góc B và C giao nhau tại I.CMR góc HBI= góc HCI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a` là số tự nhiên không chia hết cho `3` nên a có dạng:
`a = 3k + 1` hoặc `a = 3k + 2`
(`k` thuộc `N`*)
Mà a là số tự nhiên lẻ `=> a^2` là số tự nhiên lẻ `=> a^2 - 1` là số chẵn
`=> a^2 ⋮ 2`
Để `a^2 - 1 ⋮ 6` thì `a^2 - 1 ⋮ 3` (Vì `UCLN(2;3) = 1`)
- Xét `a = 3k + 1`
`=> a^2 -1 = (3k+1)^2 -1= 9k^2 + 6k + 1 - 1= 9k^2 + 6k^2 ⋮ 3` (Thỏa mãn)
- Xét `a = 3k + 2`
`=> a^2 -1 = (3k+2)^2 -1 = 9k^2 + 12k + 4 - 1= 9k^2 + 12k^2 + 3 ⋮ 3` (Thỏa mãn)
Vậy ...
Chứng minh: \(\dfrac{3}{1^2\cdot2^2}\)+\(\dfrac{5}{2^2\cdot3^2}\)+...+\(\dfrac{19}{9^2\cdot10^2}\)<1
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}\)
= \(\dfrac{3}{1.4.}+\dfrac{5}{4.9}+...+\dfrac{19}{81.100}\)
= \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
= \(1-\dfrac{1}{100}< 1\) (đpcm)
--------------------------------
Cho các số: a;b;c thuộc `N`; `c,b` khác `0` ta luôn có:
Nếu: `c-b = a` thì:
\(\dfrac{a}{b.c}=\dfrac{1}{b}-\dfrac{1}{c}\)
\(2\left(x-\dfrac{1}{3}\right)-3\left(x-1\right)=\dfrac{2}{3}\left(2-3x\right)\)
=> \(2x-\dfrac{2}{3}-3x+3=\dfrac{4}{3}-2x\)
=> \(2x-\dfrac{2}{3}-3x+3-\dfrac{4}{3}+2x=0\)
=> \(2x-3x+2x-\dfrac{2}{3}+3-\dfrac{4}{3}=0\)
=> \(x+3-\left(\dfrac{2}{3}+\dfrac{4}{3}\right)=0\)
=> \(x+3-\dfrac{6}{3}=0\)
=> \(x+3-2=0\)
=> \(x+1=0\)
=> ` x = 0 - 1`
=> `x = -1`
`(3x + 1)^4 =` \(\dfrac{1}{16}\)
`=> (3x + 1)^4 =` \(\left(\dfrac{1}{2}\right)^4\)
`=> 3x + 1 =` \(\dfrac{1}{2}\) hoặc `3x + 1 =` \(-\dfrac{1}{2}\)
`=> 3x =` \(-\dfrac{1}{2}\) hoặc `3x =` \(-\dfrac{3}{2}\)
`=> x =` \(-\dfrac{1}{6}\) hoặc `x =` \(-\dfrac{1}{2}\)
Vậy `x =` \(-\dfrac{1}{6}\) hoặc `x =` \(-\dfrac{1}{2}\)
\(\dfrac{2^8\cdot2^{18}}{8^5\cdot4^6}=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{2^{26}}{2^{27}}=\dfrac{1}{2}\)
\(\dfrac{2^8\cdot2^{18}}{8^5\cdot4^6}\\ =\dfrac{2^{8+18}}{\left(2^3\right)^5\cdot\left(2^2\right)^6}\\ =\dfrac{2^{26}}{2^{3\cdot5}\cdot2^{2\cdot6}}\\ =\dfrac{2^{26}}{2^{15}\cdot2^{12}}\\ =\dfrac{2^{26}}{2^{27}}\\ =\dfrac{1}{2}\)
\(0,\left(4\right)+\dfrac{10}{3}+0,4\left(2\right)\)
\(=\dfrac{4}{9}+\dfrac{10}{3}+\dfrac{19}{45}\)
\(=\dfrac{4}{9}+\dfrac{30}{9}+\dfrac{19}{45}=\dfrac{34}{9}+\dfrac{19}{45}=\dfrac{170+19}{45}=\dfrac{189}{45}=\dfrac{21}{5}\)
Kẻ tia `Ot` là tia đối của tia `Ox`
=> \(\widehat{xOt}=180^o\)
Ta có:
\(\widehat{yOt}=\widehat{xOt}-\widehat{xOy}=180^o-120^o=60^o\)
=> \(\widehat{tOz}=\widehat{zOy}-\widehat{yOt}=134^o-60^o=74^o\)
Mà \(\widehat{xOz};\widehat{zOt}\) là 2 góc kề bù
=> \(\widehat{zOx}+\widehat{zOt}=\widehat{xOt}\)
=> \(\widehat{xOz}=\widehat{xOt}-\widehat{tOz}=180^o-74^o=106^o\)
Vậy ...
Vòi 1 trong 1 giờ chảy được số phần bể là:
`1 : 8 =` \(\dfrac{1}{8}\) (bể)
Vòi 2 trong 1 giờ chảy được số phần bể là:
`1 : 6 =` \(\dfrac{1}{6}\) (bể)
Vòi 3 trong 1 giờ tháo được số phần bể là:
`1 : 4 =` \(\dfrac{1}{4}\) (bể)
Cả 3 vòi cùng hoạt động thì trong 1 giờ chảy được số phần bể là:
\(\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{4}=\dfrac{1}{24}\) (bể)
Đáp số: ...
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>DA=DM
mà DM<DC(ΔDMC vuông tại M)
nên DA<DC
c: XétΔBKC có
KM,CA là các đường cao
KM cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC tại N
Xét ΔDAK vuông tại A và ΔDMC vuông tại M có
DA=DM
\(\widehat{ADK}=\widehat{MDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDMC
=>DK=DC
=>ΔDKC cân tại D