cho tam giác ABC, góc A=900. D thuộc AC. Từ C vẽ đường thẳng d song song với BD. Vẽ BE vuông góc với d tại E. Chứng minh tam giác BAE đồng dạng với tam giác DBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A=1+5+52+...+52014
5A=5+52+53+...+52015
5A-A=(5+52+53+...+52015)-(1+5+52+...+52014)
\(\Rightarrow\)4A=52015-1
\(\Rightarrow\)4A+1=52015-1+1=52015
\(\Rightarrow\)5n=52015
\(\Rightarrow\)n=2015
Vậy n=2015.
\(Ta \) \(có : \)
\(A = 1 + 5 + 5 ^ 2 + ... + 5\)\(2014\)
\(5A = 5 + 5^ 2 + 5^ 3 + ... + 5\)\(2015\)
\(5A - A = ( 5 + 5^ 2 + 5^ 3+ ...+ 5\)\(2015\)\() - ( 1+ 5 + 5^2 + ...+ 5\)\(2014\)\()\)
\(4A = 5\)\(2015\) \(- 1 \)
\(\Leftrightarrow\)\(4A + 1 = 5\)\(2015\)
\(Mà \) \(theo \) \(đề \) \(ta \) \(có :\)\(4A + 1 = 5^n\)
\(\Rightarrow\)\(5^n = 5\)\(2015\)
\(\Rightarrow\)\(n = 2015\)
\(Vậy : n = 2015\)
\(N=x^2+5y^2-4xy+6x-14y+15=x^2-4xy+4y^2+6x-12y+9+y^2-2y+1+5\)
\(=\left(x^2-4xy+4y^2\right)+\left(6x-12y\right)+9+\left(y^2-2y+1\right)+5\)
\(=\left[x^2-2.x.2y+\left(2y\right)^2\right]+6\left(x-2y\right)+9+\left(y^2-2.y.1+1^2\right)+5\)
\(=\left(x-2y\right)^2+6\left(x-2y\right)+9+\left(y-1\right)^2+5\)
\(=\left[\left(x-2y\right)^2+6\left(x-2y\right)+9\right]+\left(y-1\right)^2+5\)
\(=\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y-1\right)^2+5=\left(x-2y+3\right)^2+\left(y-1\right)^2+5\ge5\)
\(\Rightarrow GTNN\)của biểu thức N là 5.
Dấu\("="\)xảy ra\(\Leftrightarrow x-2y+3=0\)và\(y-1=0\Leftrightarrow x-2y=-3\)và\(y=1\).
\(\Leftrightarrow x-2.1=-3\)và\(y=1\Leftrightarrow x=-3+2=-1\)và\(y=1\).
Vậy\(GTNN\)của biểu thức N là 5 tại\(x=-1\)và\(y=1\).
\(N = x^2+5y^2-4xy+6x-14y+15\)
\(N= [ ( x^2 - 4xy + 4y^2) + ( 6x - 12y) + 9 ]\)\(+ ( y^2 - 2y + 1 ) + 5\)\(N = [( x - 2y )^2 + 6( x - 2y ) + 9 ] + \)\(( y - 1 )^2 + 5\)\(N = ( x - 2y + 3 )^2 + ( y - 1 )^2 +5\)\(\ge\)\(5\)
\(Dấu " = " xảy ra \)\(\Leftrightarrow\)\(x - 2y + 3 = 0 \) \(và \) \(y - 1 = 0\)
\(\Rightarrow\)\(x - 2y + 3 = 0 \) \(và\) \(y = 1\)
\(\Rightarrow\)\(x = - 1\) \(và \) \(y = 1\)
\(Min N = 5 \)\(\Leftrightarrow\)\(x = - 1\) \(và \) \(y = 1\)
Ta có: S=1 + 2 + 22 + 23 + ... + 22016.
=> 2S = 2 + 22 + 23 + ... + 22017.
=> 2S - S = ( 2 + 22 + 23 + ... + 22017 ) - ( 1 + 2 + 22 + 23 + .. + 22016 ).
=> S = 22017 - 1.
Đề thiếu rồi. Số học sinh chơi cả ba môn là bao nhiêu?
Sau đó em dùng nguyên lí bù trừ là ra.
sai đề oy
|x-1/3|<1/2
=>-1/2<x-1/3<1/2
=>-1/2+1/3<x<1/2+1/3
=>-1/6<x<5/6
rùi đó,cô tui chữa lun oy
hok tốt!!
Hướng dẫn:
Gọi F là giao điểm của d và AB
\(\Delta\)BFE ~ \(\Delta\)DBA ( g - g - g)
=> \(\frac{BF}{DB}=\frac{BE}{DA}\)=> BF . DA = DB . BE (1)
Ta có : BD // CF => \(\frac{AB}{BF}=\frac{AD}{DC}\)=> AB . DC = AD . BF (2)
Từ (1) ; (2) => DB . BE = AB . DC => \(\frac{BD}{AB}=\frac{DC}{BE}\)(3)
Có: CF // BD và BE vuông CF => BE vuông DB => ^DBE = 90\(^o\)
=> ^EBF + ^DBA = 90\(^o\)
mà ^DBA + ^ADB = 90\(^o\)
=> ^EBF = ^ADB
=> ^CDB = ^EBA ( 4 )
3, 4 => \(\Delta\)BAE ~ \(\Delta\)DBC ( c.g.c)