Chứng minh:
A = 1 + 4 + 42 + 43 + ... + 458 + 459 \(⋮\)21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)
\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc
\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)
\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)
\(\frac{y-1}{2}=\frac{y-0,5}{5}\)
\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)
Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc
\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)
Giá mới là:
400000:100x(100-20)=320000(đồng)
Đáp số:320000 đồng
giá mới là
400 000 *20%=80 000
ĐS80 000
Vì \(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Ta có : x2.y2 = 144
=> (xy)2 = 122
=> (12.k2)2 =122
=> 122.k4 = 122
=> k4 = 1
=> k = \(\pm\)1
=> Nếu k = 1 => x = 4 ; y = 3
Nếu k = - 1 => x = - 4 ; y = - 3
Từ: 4x=3y=>=\(\frac{x}{3}\)=\(\frac{y}{4}\)
Đặt: \(\frac{x}{3}\)=\(\frac{y}{4}\)=k=> x=3k; y=4k
mà x^2*y^2=144
=>(3k)^2*(4k)^2=144
=>9k^2*8k^2=144
=>k^2=144:(8*9)
=>k^2=2
=>k=\(\sqrt{2}\);\(-\sqrt{2}\)
bn tự tìm x;y nhé
kick mk nha
a ) Xét \(\Delta\)BKM và \(\Delta\)CKA có :
\(\Rightarrow\)\(\Delta\)BKM = \(\Delta\)CKA ( c - g - c )
\(\Rightarrow\)Góc BMK = Góc CAK ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên BM // AC
Ta lại có : AC \(\perp\)AB
Do đó : AB \(\perp\)BM ( đpcm )
b ) Xét \(\Delta\)MBA và \(\Delta\)CAB có :
\(\Rightarrow\)\(\Delta\)MBA = \(\Delta\)CAB ( 2 cạnh góc vuông )
\(\Rightarrow\)AM = BC ( 2 cạnh tương ứng )
Mà theo đề ta có : 2AK = AM ( vì K là trung điểm AM )
Do đó : BC = 2AK ( đpcm )
\(A=1+4+4^2...+4^{59}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^5+4^6\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
\(=21+4^3\cdot21+....+4^{57}\cdot21\)
\(=21\left(1+4^3+4^6+...+4^{57}\right)⋮21\)
\(\Leftrightarrow A⋮21\)
Hok tốt
\(A = 1 + 4 + 4^2 + ... + 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)
\(A = ( 1 + 4 + 4^2 ) + ... + ( 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)\()\)
\(A = 21 + ... + 4\)\(57\)\(. ( 1 + 4 + 4^2 )\)
\(A = 21 + ... + 4\)\(57\) \(.21\)
\(A = 21 . ( 1 + ... + 4\)\(57\)\()\)\(⋮\)\(21\)
\(Vậy : A \)\(⋮\)\(21\)