K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

\(2^x+2^{x+3}=144\\ 2^x\left(1+2^3\right)=144\\ 2^x.9=144\\ 2^x=16\\ 2^x=2^4\\ \Rightarrow x=4\)

\(2^x+2^x+3=144\)

\(2\left(2^x\right)=144-3\)

\(2\left(2^x\right)=141\)

\(2^x=\frac{141}{2}\)

vô lí nhỉ????

29 tháng 2 2020

ai giup mink nha

29 tháng 2 2020

\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(=\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)(tổng thứ 2 trên tử có n chữ số 1)

Đặt \(K=3^0+3^1+3^2+3^3+...+3^{n-1}\)

\(\Rightarrow3K=3^1+3^2+3^3+3^4+...+3^n\)

\(\Rightarrow3K-K=3^1+3^2+3^3+3^4+...+3^n\)\(-3^0-3^1-3^2-3^3-...-3^{n-1}\)

\(\Rightarrow2K=3^n-1\Rightarrow K=\frac{3^n-1}{2}\)

\(\Rightarrow S=\frac{\frac{3^n-1}{2}+n}{2}=\frac{3^n+2n-1}{4}\)

Vậy \(S=\frac{3^n+2n-1}{4}\)

29 tháng 2 2020

\(\frac{0,55.\sqrt{10000}-\sqrt{1}}{6}\)

\(=\frac{55-\sqrt{1}}{6}\)

\(=\frac{54}{6}=9\)

a)ta có góc ABC+góc ACB + góc BCA=180 độ ( tổng 3 góc của tam ABC)

=> 50 độ+ góc ACB+80 độ =180 độ

=> góc ACB = 180-50-80=50 độ

Tam giác ABC có góc B = góc C=50 độ 

=> tam giác ABC cân tại A

\(\frac{25^{25}.7^{30}}{5^{48}.49^{16}}=\frac{\left(5^2\right)^{25}.7^{30}}{5^{48}.\left(7^2\right)^{16}}=\frac{5^{50}.7^{30}}{5^{48}.7^{32}}=\frac{5^2}{7^2}=\frac{25}{49}\)

hok tốt!!!

29 tháng 2 2020

\(\frac{25^{25}.7^{30}}{5^{48}.49^{16}}=\frac{\left(5^2\right)^{25}.7^{30}}{5^{48}.\left(7^2\right)^{16}}=\frac{5^{30}.7^{30}}{5^{48}.7^{32}}=\frac{5^{48}.5^2.7^{30}}{5^{48}.7^{30}.7^2}=\frac{25}{49}\)

29 tháng 2 2020

Cho xin cái đề bài bạn ơi

29 tháng 2 2020

đề bạn nhé

hok tốt

29 tháng 2 2020

a, tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB (đl)

góc ACB = góc ECN (đối đỉnh)

=> góc ABC  = góc ECN 

xét tam giác BDM và tam giác ECN có : BD = CE (gt)

góc MDB = góc CEN = 90

=> tam giác BDM = tam giác ECN (cgv-gnk)

=> DM = EN (đn)

b, MD _|_ BC (gt)

NE _|_ BC (gT)

=> MD // EN (Đl)

=> góc DMI = góc INE (slt)

xét tam giác DMI và tam giác ENI có : góc MDI = góc NEI  = 90

MD = EN (Câu a)

=>  tam giác DMI = tam giác ENI (cgv-gnk)

=> DI = IE (đn) mà I nằm giữa D và E 

=> I là trđ của DE (đn)

c, xét tam giác ABO và tam giác ACO có : AO chung

AB = AC do tam giác ABC cân tại A (gT)

góc ABO = góc ACO = 90

=> tam giác ABO = tam giác ACO (ch-cgv)

=> BO = CO (đn) 

=> O thuộc đường trung trực của BC (đl)

AB = AC (cmt) => A thuộc đường trung trực của BC (Đl)

=> AO là trung trực của BC

29 tháng 2 2020

Hình tự vẽ nha.

a, Xét \(\Delta MBD\)và \(\Delta NEC\)có:

\(CE=BD\left(gt\right)\)

\(\widehat{NEC}=\widehat{MDB}=90^0\)

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACD}\right)\)

\(\Rightarrow\Delta MBD=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=EN\left(2c.t.ứ\right)\)

b, Xét \(\Delta MID\)và \(\Delta NIE\) có:

\(\widehat{MDI}=\widehat{NEI}=90^0\)

\(EN=MD\left(cmt\right)\)

\(\widehat{MID}=\widehat{NIE}\left(đ.đ\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gn\right)\)

\(\Rightarrow ID=IE\left(2.c.t.ứ\right)\)

\(\Rightarrow I\) là giao điểm của \(DE\)

c, Xét \(\Delta ABO\) và \(\Delta ACO\) có:

\(AB=AC\)

\(\widehat{ABO}=\widehat{ACO}=90^0\)

\(AO\) là cạnh chung

\(\Rightarrow\text{​​}\)\(\Delta ABO=\Delta ACO\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\left(2g.t.ứ\right)\)

\(\Rightarrow AO\)là đường phân giác trong \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow AO\) là đường trung trực của \(BC\)

1 tháng 3 2020

Tính \(\frac{-1}{2}xy^3.3x^3y=\frac{-3}{2}.x^4.y^4\le0\)

Hai đơn thức không thể cùng giá trị dương 

\(\frac{-1}{2}\)\(xy^3\). 3\(x^3\) y=\(\frac{-3}{2}\) .\(x^4\) .\(y^4\) <0

hai đơn thức ko thể cùng giá trị dương