Bài 1: Tính giá trị biểu thức
( x - 1 )( x - 2 )(1 + x + x^2 )( 4 + 2x + x^2) với x = 1
Bài 2: Hai số x và y thỏa mãn điều kiện sau
x - y = -3 ; xy = 10
Tính giá trị biểu thức
P = x^3 - 3x^2y + 3y^2 - y^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x+y\right)^2+\left(x-y\right)^2-5\left(x+y\right)\left(x-y\right)\)
\(=4x^2+4xy+y^2+x^2-2xy+y^2-5\left(x^2-y^2\right)\)
\(=4x^2+4xy+y^2+x^2-2xy+y^2-5x^2+5y^2\)
\(=7y^2+2xy\)
Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath
Tham khảo ở link trên nhé.
\(a+b+c=0\)
\(-a=b+c\)
\(\Rightarrow-a^3=\left(b+c\right)^3\)
\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
a) (a-b)^3=-(b-a)^3
\(Taco:-\left(b-a\right)^3\)
=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)
\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)
\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)
\(=-\left(a+b\right)\left(-a-b\right)\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\)
a) (x-1)*(x+2)-(x-3)*(-x+4)=19
\(\Leftrightarrow x^2+2x-x-2-\left(-x^2+4x+3-12\right)=19\)
\(\Leftrightarrow x^2+2x-x-2+x^2-4x-3+12=19\)
\(\Leftrightarrow2x^2-3x+7-19=0\)
\(\Leftrightarrow2x^2-3x-12=0\)
Đề sai??
b) (2x -1)*(3x+5)-(6x-1)*(6x+1)=(-17)
\(\Leftrightarrow6x^2+10x-3x-5-\left(36x^2+6x-6x-1\right)=-17\)
\(\Leftrightarrow6x^2+10x-3x-5-36x^2-6x+6x+1=-17\)
\(\Leftrightarrow-30x^2+7x-4+17=0\)
\(\Leftrightarrow-30x^2+7x+13=0\)
???
a) = 4x2 + 10x + 35 (dư 104)
b) = 3x3 - 7x2 + 14x - 24 (dư 47)
c) = 12x3 + 22x2 + 44x + 73 (dư 156)
Mik chỉ viết đáp án thui nha
~ Học tốt ~
mình hỏi vs 3y^2 là 3xy^2 phải không hay chỉ là 3y^2
Bài 2: \(\hept{\begin{cases}x-y=-3\\x=\frac{10}{y}\end{cases}\Rightarrow}\)\(\frac{10}{y}-y=-3\Leftrightarrow y^2-3y-10=0\Leftrightarrow\orbr{\begin{cases}y=5\Rightarrow x=2\\y=-2\Rightarrow x=-5\end{cases}}\)
*Với x=2;y=5 =>P=-102
*Với x=-5;y=-2 =>P=45