OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\) với x>=0 x khác
9
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\)
\(=\left(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{3x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=3\sqrt{x}\)
\(2x^3=\left(x-1\right)^{^3}\)
Cho tam giác ABC vuông tại A đường cao AH. Vẽ đường tròn tâm A bán kính AH, kẻ tiếp tuyến BD,CE với (A) (D,E là các tiếp điểm khác H). Chứng minh DE tiếp xúc với đường tròn đường kính BC
Giải nhanh giùm mk nha, cần gấp lắm
cho mình nick truy kích mình hứa sẽ học chăm chỉ
một đường tròn tiếp xúc với 2 cạnh của một góc vuông đỉnh A tại B và C. vẽ tiếp tuyến của đường tròn cắt AB, AC tại M,N . chứng minh
\(\frac{AB+AC}{3}< MB+NC< \frac{AB+AC}{2}\)
cho P cố định trong (O;R) với P khác O. AB là dây đi qua P. các tiếp tuyến tại A và B cắt nhau tại M. N là một điểm bất kỳ trên đường thẳng nối trung điểm của MA và MB. vẽ tiếp tuyến NK của (O)
a/ xác định vị trí của A, B để độ dài cung AB lớn nhất, nhỏ nhất
b/ chứng minh NK = NM
c/ M di động trên đường thẳng cố định nào
a)tìm ĐKXĐ
b)Rút gọn
c) So sánh với 1
\(1:\left(\frac{x+2}{x\sqrt{x}+1}+\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{\sqrt{x}-1}{x-1}\right)\)
\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\)
\(=\left(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{3x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=3\sqrt{x}\)