K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

a) \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)=3

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

<=> x+1+x-2=3

<=> 2x = 3+2-1

<=>2x=4

<=> x=2

6 tháng 8 2018

ĐK: \(x^3+4x^2+5x+6\ge0\)

Ta có: \(x^3+4x^2+5x+6=\left(x+3\right)\left(x^2+x+2\right);x^2+2x+5=\left(x+3\right)+\left(x^2+x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+3}=u\\\sqrt{x^2+x+2}=v\end{cases}}\)

Vậy nên ta có phương trình: \(\)\(u^2+v^2=\frac{5}{2}uv\)

\(\Leftrightarrow2u^2-5uv+2v^2=0\Leftrightarrow\orbr{\begin{cases}u=2v\\u=\frac{1}{2}v\end{cases}}\)

Với u = 2v ta có: \(\sqrt{x+3}=2\sqrt{x^2+x+2}\Leftrightarrow x+3=4x^2+4x+8\)

\(\Leftrightarrow4x^2+3x+5=0\)   (Vô nghiệm)

Với \(u=\frac{1}{2}v\) ta có: \(2\sqrt{x+3}=\sqrt{x^2+x+2}\Leftrightarrow4x+12=x^2+x+2\)

\(\Leftrightarrow x^2-3x-10=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\left(tmđk\right)\)

Vậy phương trình có nghiệm \(x\in\left\{5;-2\right\}\)

4 tháng 8 2018

Chu vi \(\Delta ABC\)là :

105 + 4 + 45 = 154

 Đ/s:.................

4 tháng 8 2018

Làm:

Chu vi \(\Delta ABC\)là:

\(105+4+45=154\)

Đ/s:.........

~ học tốt ~

4 tháng 8 2018

a) Đk: x \(\ge\) 5

\(\sqrt{x-5}-\frac{x-14}{3x+\sqrt{x-5}}=3\)

\(\sqrt{x-5}\left(3+\sqrt{x-5}\right)-\frac{x-14}{3\sqrt{x-3}}\left(3+\sqrt{x-5}\right)=3\left(3+\sqrt{x-5}\right)\)

\(\sqrt{x-5}\left(3+\sqrt{x-5}\right)-\left(x-14\right)=3\left(3+\sqrt{x-5}\right)\)

\(3\sqrt{x-5}+9-\left(3\sqrt{x-5}+9\right)=9+3\sqrt{x-5}-\left(3\sqrt{x-5}+9\right)\)

=> Luôn đúng với x \(\ge\) 5

chúc bạn học tốt 

13 tháng 9 2018

Ai còn onl ko kb vs mk bùn quá!!!

4 tháng 8 2018

Đặt:   \(A=\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}\)\(>\)\(0\)

=>   \(A^2=\frac{7+\sqrt{5}+2.\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}+7-\sqrt{5}}{7+2\sqrt{11}}\)

            \(=\frac{14+4\sqrt{11}}{7+2\sqrt{11}}\)

             \(=\frac{2\left(7+2\sqrt{11}\right)}{7+2\sqrt{11}}=2\)

=>  \(A=\sqrt{2}\)

\(D=\sqrt{2}-\sqrt{3-2\sqrt{2}}\)

     \(=\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

     \(=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

 Ai làm được xin gọi bằng sư phụ ạ .

Trên đấy là toán thi vào lớp 10 loại khó , giàng cho câu cuối cùng 1 điểm 1 câu đấy .

0
4 tháng 8 2018

giúp mình với

4 tháng 8 2018

\(A=\frac{\sqrt{2}}{\sqrt{2}+\sqrt{2+\sqrt{2}}}+\frac{\sqrt{2}}{\sqrt{2}+\sqrt{2-\sqrt{2}}}\)

\(=\frac{\sqrt{2}\left(\sqrt{2}-\sqrt{2+\sqrt{2}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2}-\sqrt{2+\sqrt{2}}\right)}+\frac{\sqrt{2}\left(\sqrt{2}-\sqrt{2-\sqrt{2}}\right)}{\left(\sqrt{2}+\sqrt{2-\sqrt{2}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{2}}\right)}\)

\(=\frac{\sqrt{2}\left(2-\sqrt{2+\sqrt{2}}\right)}{2-\left(2+\sqrt{2}\right)}+\frac{\sqrt{2}\left(2-\sqrt{2-\sqrt{2}}\right)}{2-\left(2-\sqrt{2}\right)}\)

\(=-\left(2-\sqrt{2+\sqrt{2}}\right)+\left(2-\sqrt{2-\sqrt{2}}\right)\)

\(=\sqrt{2+\sqrt{2}}-\sqrt{2-\sqrt{2}}\)

=>  \(A^2=2+\sqrt{2}-2.\sqrt{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}+2-\sqrt{2}\)

            \(=4-2.\sqrt{2}\)

=>  \(A=\sqrt{4-2\sqrt{2}}\)

P/S: mk lm đc có z thôi, bn tham khảo, sai đâu m.n bỏ qua