Cho biểu thức
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) Rút Gọn A
b) Biết \(a\ge1\), So Sánh A và |A|
c) Tìm a Để A=2
d) Tìm GIá Trị Nhỏ Nhất Của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x-7\sqrt{x}+4=0\)
\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
\(\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}\)
ĐK: \(x\ge1\)
\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
<=> \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\sqrt{\frac{1}{64}\left(x-1\right)}=-17\)
<=> \(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
<=> \(-\sqrt{x-1}=-17\)
<=> \(x-1=17^2\)
<=> \(x=290\)
Vậy....
c/m \(\sqrt{a+n}+\sqrt{a-n}< 2\sqrt{a}\)
\(\left(\sqrt{a+n}+\sqrt{a-n}\right)^2< \left(2\sqrt{a}\right)^2\)
\(\Leftrightarrow a+n+a-n+2\sqrt{a^2-n^2}< 4a\)
\(2a+2\sqrt{a^2-n^2}< 2a+2\sqrt{a^2}\)
\(2a+2\sqrt{a^2-n^2}< 4a\)
=>\(\sqrt{2001-1}+\sqrt{2001+1}< 2\sqrt{2001}\)
nên\(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\left(đpcm\right)\)
A B C M N K
a) Áp dụng hệ thức lượng △NMC vuông tại N ta có :
\(\frac{1}{MN^2}+\frac{1}{NC^2}=\frac{1}{NK^2}\)
\(\Leftrightarrow\frac{1}{15^2}+\frac{1}{NC^2}=\frac{1}{12^2}\)
\(\Leftrightarrow NC=20\)cm
Ta có : △ABC vuông tại A có AM là đường trung tuyến (M thuộc BC)
=> AM = MC
=> △AMC cân tại M
=> MN đồng thời vừa là đường cao vừa là đường trung tuyến
=> AN = NC = \(\frac{AC}{2}\)
Mà NC = 20cm
=> AC = 40cm
=> \(S_{AMC}=\frac{40.15}{2}=300\left(cm^2\right)\)
Ta có : \(S_{AMC}=\frac{1}{2}S_{ABC}\)
vì có cùng độ dài đường cao và \(MC=\frac{1}{2}BC\)
Vậy \(S_{ABC}=600cm^2\)
a) ĐK: \(a>0\)
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\sqrt{a}.\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)