Cho hình thang ABCD (AB//CD) có AB < CD. Cmr A+B > C+D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=y^2+8y+15\)
\(=\left(y^2+8y+16\right)-1\)
\(=\left(y+4\right)^2-1\ge-1\)
Dấu "=" xảy ra khi \(y=-4\)
\(2x^2+5y^2+4xy+8x-4y-100\)
\(=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)
\(\ge-120\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2y=0\\x+4=0\\y-2=0\end{cases}}\Rightarrow y=2;x=-4\)
A = 5(x + 3)(x - 3) + (2x + 3)3 + (x - 6)2
A = 5(x + 3)(x - 3) + 4x2 + 12x + 9 + x2 - 12x + 36
A = 5x2 - 45x + 4x2 + 12x + 9 + x2 - 12x + 36
A = 10x2 (1)
Thay x = -1/5 vào (1), ta có:
A = 10x2 = 10.(-1/5)2 = 2/5
A = 2/5
Vậy:...
\(x^2+x+1=\left(x^2+\frac{1}{2}\cdot2\cdot x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)
\(4x^2+4x-5=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)
link nè:https://olm.vn/hoi-dap/tim-kiem?q=cho+h%C3%ACnh+thang+c%C3%A2n+abcd+t%C3%ADnh+%C4%91%C6%B0%E1%BB%9Dng+cao+bi%E1%BA%BFt+ab=10cm,cd=26cm,ad=17+cm&id=1027780\
học tốt
Nhận xét: chỉ cần biến đổi chút là bài toán trở nên đơn giản hơn rất nhiều:
P = (1 + 1/x)(1 + 1/y) . (1 - 1/x)(1 - 1/y)
= (1 + 1/x)(1 + 1/y) . (x -1)(y - 1)/(xy)
= (1 + 1/x)(1 + 1/y) . (-x).(-y)/(xy)
= (1 + 1/x)(1 + 1/y)
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy)
Ta có:
A=|x−4|+|x−2020|=|x−4|+|2020−x|≥x−4+2020−x=2016
Dấu "=" xảy ra <=> x - 4 ≥0≥0
và 2020 - x ≥0≥0
<=> x≥4x≥4 và x≤2020x≤2020
⇔4≤x≤2020⇔4≤x≤2020
Vậy A đạt GTNN là 2016 ⇔4≤x≤2020
Ta có: x - y = 1 => x = 1 + y
Khi đó, ta có:
(1 + y)2 + y2 + 2020 = 1 + 2y + y2 + y2 + 2020 = 2y2 + 2y + 2021 = 2(y2 + y + 1/4) + 4041/2 = 2(y + 1/2)2 + 4041/2
Ta luôn có: (y + 1/2)2 \(\ge\)0 \(\forall\)y
=> 2(y + 1/2)2 + 4041/2 \(\ge\)4041/2 \(\forall\)y
Dấu "=" xảy ra khi : \(y+\frac{1}{2}=0\Leftrightarrow y=-\frac{1}{2}\)
<=> \(x=-\frac{1}{2}+1=\frac{1}{2}\)
Vậy Min của x2 + y2 + 2020 = 4041/2 tại x = 1/2 và y = -1/2