Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không vẽ hình trên này vì nó quá phức tạp, nên mong bạn thông cảm tự vẽ hình nhé, mình xin lỗi.
a) Xét (O) có \(\widehat{BAM},\widehat{CNM}\) là góc nội tiếp chắn \(\stackrel\frown{BM},\stackrel\frown{CM}\)
Mà \(\stackrel\frown{BM}=\stackrel\frown{CM}\) (vì M là điểm chính giữa của \(\stackrel\frown{BC}\))
\(\Rightarrow\widehat{BAM}=\widehat{CNM}\) hay \(\widehat{KAI}=\widehat{CNM}\)
Lại có MN là đường kính của (O) \(\Rightarrow\widehat{MCN}\) là góc nội tiếp chắn nửa đường tròn \(\Rightarrow\widehat{MCN}=90^o\) \(\Rightarrow\widehat{AKI}=\widehat{NCM}\left(=90^o\right)\)
Xét \(\Delta AKI\) và \(\Delta NCM\) có \(\widehat{KAI}=\widehat{CNM}\) và \(\widehat{AKI}=\widehat{NCM}\left(cmt\right)\)\(\Rightarrow\Delta AKI~\Delta NCM\left(g.g\right)\)
Ta có thể dễ thấy tứ giác BICT nội tiếp vì \(\widehat{TBI}+\widehat{TCI}=90^o+90^o=180^o\)
\(\sqrt{16+6\sqrt{7}}=\sqrt{9+2.3.\sqrt{7}+7}=\sqrt{\left(3+\sqrt{7}\right)^2}=\left|3+\sqrt{7}\right|=3+\sqrt{7}\)
\(\sqrt{16+6\sqrt{7}}=\sqrt{9+2.3\sqrt{7}+7}=\sqrt{3^2+2.3\sqrt{7}+\left(\sqrt{7}\right)^2}\)\(=\sqrt{\left(3+\sqrt{7}\right)^2}=3+\sqrt{7}\)