Cho hình thang ABCD(AB//CD) có AB = 7cm, CD=12cm. Gọi M là trung điểm của CD, E là gia điểm của MA và BD, F là giao điiểm của MB và AC.
a, chứng minh EF // với AB
b, tính độ dài đoạn EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh của từng khối lần luotj là: a, b, c, d (a, b, c, d ∈ N*)
Theo bài ra, ta có: \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và a+b+c+d=1050
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{9}\) \(=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{a+b+c+d}{9+8+7+6}=\frac{1050}{30}=35\)
_\(\frac{a}{9}\)= 35 ⇒ 315
_\(\frac{b}{8}\) = 35 ⇒ 280
_ \(\frac{c}{7}\) = 35 ⇒245
_\(\frac{d}{6}\) = 35 ⇒210
Vậy số học sinh của các khối là: khối 6: 315 hs
Khối 7: 280 hs
Koois 8: 245 hs
Khối 9: 210 hs
học tốt
Trả lời:
+ Gọi số học sinh mỗi khối lần lượt là a, b, c, d (học sinh)
Đk: \(a,b,c,d\inℕ^∗\)
+ Vì một trường THCS có 1050 học sinh.
\(\Rightarrow a+b+c+d=1050\)
+ Vì số học sinh của bốn khối 6, 7, 8, 9 lần lượt tỉ lệ với 9, 8, 7, 6
\(\Rightarrow\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)
\(\Rightarrow\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{a+b+c+d}{9+8+7+6}\)\(=\frac{1050}{30}=35\)(Tính chất dãy tỉ số bằng nhau và a + b + c + d = 1050)
\(\Rightarrow\)\(a=35.9=315\)
\(b=35.8=280\)(Thỏa mãn Đk:\(a,b,c,d\inℕ^∗\))
\(c=35.7=245\)
\(d=35.6=210\)
Vậy số học sinh mỗi khối 6, 7, 8, 9 lần lượt là 315 học sinh, 280 học sinh , 245 học sinh, 210 học sinh.
Hok tốt!
Good girl
Bài 2: Gọi độ dài 3 cạnh của tam giác là a,b,c ( a,b,c>0)
chu vi của tam giác là 22 nên a+b+c = 22
vì a, b, c tỉ lệ với 2; 4; 5 nên a/2=b/4=c/5
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)
suy ra a= 4; b = 8; c = 10
Bài 3: \(x:y:z=2:4:5\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{22}{11}=2\)
suy ra x= 4, y=8, z=10
Sửa đề △ABC có ^CAB = 120o thì mới chứng minh △DEF đều được.
a, Xét △FDA vuông tại F và △EDA vuông tại E
Có: DA là cạnh chung
^FAD = ^EAD (gt)
=> △FDA = △EDA (ch-gn)
=> DF = DE (2 cạnh tương ứng)
=> △DEF cân tại D (1)
Vì AD là phân giác ^CAB => ^CAD = ^BAD = ^CAB : 2 = 120o : 2 = 60o
Xét △FAD vuông tại F có: ^FAD + ^FDA = 90o (tổng 2 góc nhọn trong tam giác vuông)
=> 60o + ^FDA = 90o => ^FDA = 30o
Mà ^FDA = ^EDA (△FDA = △EDA) => ^EDA = 30o
Ta có: ^FDE = ^FDA + ^EDA = 30o + 30o = 60o (2)
Từ (1) và (2) => △DEF đều
b, Ta có: AI = AF + FI và AK = AE + EK
Mà AF = AE (△FDA = △EDA) ; FI = EK (gt)
=> AI = AK
Xét △IAD và △KAD
Có: AI = AK (cmt)
^IAD = ^KAD (gt)
AD là cạnh chung
=> △IAD = △KAD (c.g.c)
=> ID = KD (2 cạnh tương ứng)
=> △IDK cân tại D
c, AD // CM (gt) => ^DAB = ^CMB (2 góc đồng vị)
Mà ^DAB = 60o => ^CMB = 60o => ^CMA = 60o (3)
Ta có: ^CAM + ^CAB = 180o (2 góc kề bù)
=> ^CAM + 120o = 180o => ^CAM = 60o (4)
Từ (3) , (4) => ^CMA = ^CAM => △CMA cân tại C mà ^CMA = 60o => △MAC đều
=> AC = AM = MC
Vì △ vuông FAD có: ^FDA = 30o (cmt)
=> AD = 2 . AF
=> AD = 2 . (AC - CF)
=> AD = 2 . (CM - CF) = 2 . (m - n)
giả sử /x/ + x
TH1: x>0 => /x/+x=x+x=2x
TH2: x< hoặc =0 => /x/+x=0
=> /x/+x chẵn
=> /n-2016/ + n-2016 chẵn
=> 2^m +2015 chẵn
Mà 2015 lẻ => 2^m lẻ => m=0
thay vào .............
n=3024
m=0
học tốt
2m + 2015 = |n - 2016| + n - 2016
=> Ta có 2 trường hợp:
+/ 2m + 2015 = (n - 2016) + n - 2016
=> 2m + 2015 = n - 2016 + n - 2016
=> 2m + 2015 = 2n - 4032 (1)
Ta có 2n là số chẵn, -4032 cũng là số chẵn (2)
Từ (1) và (2) => 2m + 2015 là số chẵn
Mà 2015 là số lẻ nên 2m là số lẻ => m = 0
Thay m = 0 vào biểu thức 2m + 2015 = 2n - 4032, ta có:
20 + 2015 = 2n - 4032
=> 1 + 2015 = 2n - 4032
=> 1 + 2015 + 4032 = 2n
=> 6048 = 2n
=> 3024 = n hay n = 3024
+/ 2m + 2015 = -(n - 2016) + n - 2016
=> 2m + 2015 = -n + 2016 + n - 2016
=> 2m + 2015 = 0
=> 2m = -2015
⇒2m∉∅⇒m∉∅
a)Theo hệ quả định lý Ta let có:
Xét tam giác FMC có :
AB // CD => AB // MC nên BF/FM=AB/CM(1)
Xét tam giác EDM có :
AB // DM => AE/EM=AB/DM(2)
Mà M là trung điểm DC => DM = MC
=> AB/DM=AB/MC(3)
Từ (1) (2) (3) => AE/EM=BF/FM
Xét tam giác MBA có : AE/EM=BF/FM=> EF // AB
b)Xét tam giác EDM có AB // DM => ME/AM=DM/AB(4)
Do EF//AB => EF/AB=ME/AM(5)
Từ (4) và (5) => DM/AB=EF/AB⇒EF=DM=12/2=6cm