Cho a, b , c ko âm và thỏa mãn \(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\) . Tìm GTLN và GTNT của P = 2a + 3b - 4c
Bạn nào zúp vs ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x\inℕ^∗\)nên \(x\ge1\)
\(\Rightarrow2x\ge2\Leftrightarrow3x+1\ge x+3\)
\(\Rightarrow4^b>2^a\Rightarrow4^b⋮2^a\)
\(\Rightarrow3x+1⋮x+3\)
\(\Rightarrow3\left(x+3\right)-8⋮x+3\)
Mà \(3\left(x+3\right)⋮x+3\)nên \(8⋮x+3\)
\(\Rightarrow x+3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà \(x+3\ge4\)(do x nguyên dương) nên \(x+3\in\left\{4;8\right\}\)
+) Xét x + 3 = 4 \(\Leftrightarrow2^a=4\Leftrightarrow a=2\)
\(x+3=4\Rightarrow x=1\Rightarrow3x+1=4=4^b\Rightarrow b=1\)
+) Xét x + 3 = 8 \(\Leftrightarrow2^a=8\Leftrightarrow a=3\)
\(x+3=8\Rightarrow x=5\Rightarrow3x+1=16=4^b\Rightarrow b=2\)
Vậy ta tìm được bộ ba số (a;b;x) thỏa mãn là \(\left(2;1;1\right);\left(3;2;5\right)\)
a) vì tam giác ABD có đường cao AH đồng thời là đường trung tuyến ( do BH=DH)
=> nên tam giác ABD cân tại A => AB=AD
b) vì tam giác ABC vuông nên góc ACB +gócABC =90
=> góc ABD = 60 độ
tam giác ABD cân tại A có 1 góc = 60 độ => là tam giác đều
c) có vấn đề gì đó bn xem lại nha
d)
c) ta có sin ACB =\(\frac{1}{2}=\frac{AB}{BC}\)
=> BC = 10 tìm AC tương tự nha
_ Kudo_
Đề cs sai k bạn ???
+) Xét \(\Delta\)MNP vuông tại M
\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)
\(\Rightarrow NP^2=10^2+10^2\)
\(\Rightarrow NP^2=100+100=200\)
\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )
Gọi số học sinh 3 khối lần lượt là x y z ( x,y,z là các số tự nhiên)
Theo bài ra ta có
\(10x=9y=8z\)
và x-60 =z
thay vào và tính nốt là ra
- Kudo-
\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)
\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)
\(\Rightarrow P=-2+a+c\)
Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)
\(\Rightarrow a+c\le3\)
\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)
Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)
Chị chỉ tìm được Max thui
\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)
<=> \(\hept{\begin{cases}b+2c=6-2a\\4b-3c=4-3a\end{cases}}\)
<=> \(\hept{\begin{cases}c=\frac{20}{11}-\frac{5a}{11}\\b=\frac{26}{11}-\frac{12}{11}a\end{cases}}\)
P = \(2a+3\left(\frac{26}{11}-\frac{12}{11}a\right)-4\left(\frac{20}{11}-\frac{5a}{11}\right)\)
\(=-\frac{2}{11}+\frac{6}{11}a\ge-\frac{2}{11}\)
Dấu "=" xảy ra <=> a = 0 => c =20/11 và b = 26/11
Vậy min P = -2/11 tại a = 0; b = 26/11 và c= 20/11