K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

\(M=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{x-9}\)

\(=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

b) Ta có: \(x=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\left|\sqrt{3}-1\right|}\)

\(=\sqrt{\sqrt{3}-\sqrt{3}+1}=\sqrt{1}=1\)( thỏa mãn ĐKXĐ )

Thay \(x=1\)vào M ta được:

\(M=\frac{3\sqrt{1}}{\sqrt{1}-3}=\frac{3}{1-3}=\frac{-3}{2}\)

c) \(M=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\sqrt{x}-9+9}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)+9}{\sqrt{x}-3}=3+\frac{9}{\sqrt{x}-3}\)

Vì \(x\inℕ\)\(\Rightarrow\)Để M là số tự nhiên thì \(\frac{9}{\sqrt{x}-3}\inℕ\)

\(\Rightarrow9⋮\left(\sqrt{x}-3\right)\)\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\)(1)

Vì \(x\ge0\)\(\Rightarrow\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}-3\ge-3\)(2)

Từ (1) và (2) \(\Rightarrow\sqrt{x}-3\in\left\{-3;-1;1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\)\(\Rightarrow x\in\left\{0;4;16;36;144\right\}\)( thỏa mãn ĐKXĐ )

Thử lại với \(x=4\)ta thấy M không là số tự nhiên

Vậy \(x\in\left\{0;16;36;144\right\}\)

17 tháng 8 2018

Bài Làm: 

vẽ AH vuông góc với BC 

\(\Rightarrow\cot B=\frac{BH}{AH}\left(\Delta ABH;\widehat{H}=1v\right)\)

\(\Rightarrow\cot C=\frac{HC}{AH}\left(\Delta HCA;\widehat{H}=1v\right)\)

\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\left(1\right)\)

Gọi G là giao điểm 2 đường trung tuyến BM ; CN

Nếu AG cắt BC tại I thì AI - đường trung tuyến tam giác ABC

Suy ra BI = IC 

suy ra GI - đường trung tuyến tam giác GBC vuông tại G

\(\Rightarrow BC=2GI\left(2\right)\)

\(AH\le AI\le3GI\left(3\right)\)

\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\ge\frac{2AI}{3AI}=\frac{2}{3}\)

Vậy \(\cot B+\cot C\ge\frac{2}{3}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(AH\equiv AI\)

\(\Rightarrow\Delta ABC\)cân tại A


A B C M N H I G \ \ // //

18 tháng 8 2020

pt =>   \(x^2-x+1+x^2+x+1+2\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}=4-x\)

<=>   \(2x^2+2+2\sqrt{\left(x^2+1\right)^2-x^2}=4-x\)

<=>   \(2x^2+x-2+2\sqrt{x^4+2x^2+1-x^2}=0\)

<=>   \(2x^2+x-2+2\sqrt{x^4+x^2+1}=0\)

<=>   \(2\sqrt{x^4+x^2+1}=2-x-2x^2\)

=>   \(4\left(x^4+x^2+1\right)=4+x^2+4x^4-4x-8x^2+4x^3\)

<=>   \(4x^4+4x^2+4=4x^4+4x^3-7x^2-4x+4\)

<=>   \(4x^3-11x^2-4x=0\)

<=>   \(x\left(4x^2-11x-4\right)=0\)

<=>   \(\orbr{\begin{cases}x=0\\4x^2-11x-4=0\left(2\right)\end{cases}}\)

PT (2)  <=>    \(\orbr{\begin{cases}x=\frac{11+\sqrt{185}}{8}\\x=\frac{11-\sqrt{185}}{8}\end{cases}}\)

DO ĐKXĐ CỦA x là    \(x\le4\)

=> VẬY TẤT CẢ CÁC NGHIỆM CỦA x là:    \(\left\{0;\frac{11+\sqrt{185}}{8};\frac{11-\sqrt{185}}{8}\right\}\)

2 tháng 9 2020

PT <=> \(2\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}=2-x-2x^2\)

\(4\left(x^2-x+1\right)\left(x^2+x+1\right)=\left(-2x^2-x+2\right)^2\)( bình phương )

\(4x^4+4x^2+4=4-4x-7x^2+4x^3+4x^4\)

\(4x^4-4x^4+4x^2-7x^2-4x^3+4x=0\)

\(-3x^2-4x^3+4x=0\)

17 tháng 8 2018

\(x+y+z=0\)=>\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=0\)(*)

ta co :

\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}^2=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|^2\)

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}\)

\(\frac{2}{xy}+\frac{2}{xz}+\frac{2}{yz}=0\) luon dung vi (*)

=> dpcm

ban sua lai de di  dau "-"=>"+"

17 tháng 8 2018

x^2+xy+3x+2y=1 tương đương y=(1-x^2-3x)/(x+2) suy ra x+2 thuộc ước của 3

17 tháng 8 2018

tại sao lại là ước của3