\(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\sqrt{2}=1,41....\)
\(\sqrt{3}=1,73....\)
\(\Rightarrow\sqrt{2}< \sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(5+\sqrt{3}\right)\left(1-\sqrt{3}\right)-\left(1-2\sqrt{3}\right)^2\)
\(=2-4\sqrt{3}-\left(1-4\sqrt{3}+12\right)\)
\(=2-4\sqrt{3}-1+4\sqrt{3}-12\)
\(=-11\)
\(\left(5+\sqrt{3}\right)\left(1-\sqrt{3}\right)-\left(1-2\sqrt{3}\right)^2\)
=\(5-5\sqrt{3}+\sqrt{3}-3-\left(1-4\sqrt{3}+12\right)\)
=\(5-5\sqrt{3}+\sqrt{3}-3-1+4\sqrt{3}-12\)
=-11
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\ge1\)
Bình phương hai vế
\(\Rightarrow x-1+x+1-2\sqrt{\left(x-1\right)\left(x+1\right)}=4\)
\(2x-2\sqrt{x^2-1}=4\)
\(\Leftrightarrow\sqrt{x^2-1}=x-2\)
Bình phương 2 vế
\(\Rightarrow x^2-1=x^2-4x+4\)
\(\Leftrightarrow4x=5\)
\(x=\frac{5}{4}\left(tm\right)\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a\sqrt{b}-b\sqrt{a}\)
\(=\sqrt{ab}.\left(\sqrt{a}-\sqrt{b}\right)\)
Có sai sót gì xin bỏ qua~!
ĐKXĐ : \(x\ge0\)và \(y\ge1\)
\(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
\(x+y+12-4\sqrt{x}-6\sqrt{y-1}=0\)
\(\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)
\(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\left(\sqrt{y-1}-3\right)^2=0\end{cases}}\)( Vì \(\left(\sqrt{x}-2\right)^2\ge0\forall x\) và \(\left(\sqrt{y-1}-3\right)^2\ge0\forall y\))
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{y-1}-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\\sqrt{y-1}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4\\y-1=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4\\y=10\end{cases}}\)
Vậy ...