Cho \(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\) ; \(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
Tính giá trị biểu thức \(P=\frac{xy}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Theo đề ta có: n không chia hết cho 2 và 5 (1)
Mà n^4 đồng dư với 0 và 1 trong phép chia cho 8 ; n^4 đồng dư với 0 và 1 trong phép chia cho 5 (2)
Từ (1)và(2) suy ra n^4 đồng dư với 1 trong phép chia cho 5 và 8. =>n^4-1 chia hết cho 5 và 8
Mà 5 và 8 nguyên tố cùng nhau
Suy ra n^4-1 chia hết cho 40
2)
Có P= x^2+3xy+y^2
=(x+y)^2+xy <= 4 + (x+y)/4 <= 4 +1/2 = 7/2
\(A=a^3-b^3-ab\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)
\(=a^2+ab+b^2-ab\) (vì \(a-b=1\))
\(=a^2+b^2\)
\(=a^2+\left(a-1\right)^2\)
\(=2a^2-2a+1\)
\(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)
Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)
\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)
Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)
Chúc bạn học tốt.