Cho x,y.z thỏa mãn x/2=y/3,y/4=z/5 và x+y-z=10.Gía trị x,y,z là
A.x=16;y=24;z=30
B.x=30;y=24;z=16
C.x=2;y=3;z=5
D.x=24;y=16;z=30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta cs
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)
Từ (1) ; (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{-x-y+z}{-10-15+12}=-\frac{52}{-13}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=4\\\frac{y}{15}=4\\\frac{z}{12}=4\end{cases}\Rightarrow\hept{\begin{cases}x=40\\y=60\\z=48\end{cases}}}\)
áp dụng định lý py ta go trong tam giác ABH có:
AH2+BH2=AB2
AH2+144=225
AH2=81
AH=9
áp dụng định lý py ta go trong tam giác AHC có
AH2+HC2=AC2
81 + X =1681
X =40
nhìn hình dễ mà bn !!!
AD định lí Py ta go của \(\Delta ABH\)
\(AH^2+BH^2=AB^2\)
\(AH^2=AB^2-BH^2\)
\(AH^2=15^2-12^2\)
\(AH^2=81\)
\(AH=9\)
AD định lí Py ta go của \(\Delta AHC\)
\(AH^2+HC^2=AC^2\)
\(HC^2=AC^2-AH^2\)
\(HC^2=41^2-9^2\)
\(HC^2=1600\)
\(HC=40\)
Vậy độ dài x hình bên là 40
\(-6\frac{12}{27}\cdot5\frac{1}{4}-1\frac{5}{17}\cdot5\frac{1}{4}=\left(-6\frac{12}{27}-1\frac{5}{17}\right)\cdot5\frac{1}{4}\)
\(=-\frac{1184}{153}\cdot\frac{21}{4}=\frac{-2072}{51}\)
Nếu AH vừa là đường cao vừa là trung tuyến:
Thì tam giác ABC cân tại A : Suy ra B^ = C^ = 75 độ.
NẾu AH chỉ là đường cao (đang suy nghĩ) học tốt hihi
A C B H K I
Gọi I là trung điểm BC
TRên cùng nửa mặt phẳng bờ BC chứa A lấy K sao cho \(\Delta\)CKI đều => CK = KI = CI = IB =AH (1)
=> ^KCB = ^KCI = 60o
=> ^ACK = ^ACB - ^KCB = 75o - 60o = 15o
Xét \(\Delta\)ACH vuông tại H có: ^ACH = ^ACB = 75o
=> ^CAH = 90o - ^ACH = 15o
Xét \(\Delta\)ACK và \(\Delta\)CAH có:
^ACK = ^CAH = 15 độ
AC chung
AH = CK ( theo (1))
=> \(\Delta\)ACK = \(\Delta\)CAH => ^AKC = ^CHA = 90 độ
Xét \(\Delta\)CKB có: KI là đường trung tuyến và KI =CI = IB = CB/2
=> \(\Delta\)CKB vuông tại K => ^CKB = 90 độ
=> ^AKB = ^AKC + ^CKB = 90o + 90o = 180 độ
=> A; K; B thẳng hàng
=> ^ABC = ^KBC = 90o - ^KCB = 90o - 60o = 30 độ
Theo bài ra ta cs
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) ; (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}}\)
Như vậy ta chọn : A