K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

87^2+73^2-27^2-13^2

=(87+73-27-13)^2

=120^2

=14400

\(87^2+73^2-27^2-13^2=\left(87^2-27^2\right)+\left(73^2-13^2\right)\)

              \(=\left(87-27\right)\left(87+27\right)+\left(73-13\right)\left(73+13\right)\)

\(=60\cdot114+60\cdot86=60\left(114+86\right)=60\cdot200=12000\)

10 tháng 8 2019

A B C I N M J P Q R K

Gọi AJ là đường trung tuyến của \(\Delta\)ABC. Đường thẳng qua N song song AB cắt BC tại P.

Đường thẳng qua C song song AB cắt đường thẳng qua M song song BC và AJ lần lượt tại Q,R.

Ta thấy \(\Delta\)MAN có đường cao AI đồng thời là đường phân giác nên \(\Delta\)MAN cân tại A

=> I cũng là trung điểm cạnh MN. Từ đó \(\Delta\)MBI = \(\Delta\)NPI (g.c.g) => NP = BM; ^INP = ^IMB

Mà NP // BM // CQ, BM = CQ nên NP // QC, NP = QC => Tứ giác NPQC là hình bình hành

Nếu ta gọi K là trung điểm PC thì N,K,Q thẳng hàng

Chú ý rằng \(\Delta\)NPC ~ \(\Delta\)ABC (g.g) với trung tuyến tương ứng NK,AJ => \(\Delta\)NPK ~ \(\Delta\)ABJ (c.g.c)

=> ^PNQ = ^PNK = ^BAJ. Kết hợp với ^INP = ^IMB (cmt) suy ra ^MNQ = ^INP + ^PNQ = ^BAJ + ^IMB (1)

Mặt khác: \(\Delta\)ABJ = \(\Delta\)RCJ (g.c.g) => AB = CR < AC => ^BAJ = ^CRJ > CAJ

Điều đó có nghĩa là ^BAJ > ^BAC/2 = ^BAI => ^BAJ + ^IMB > ^BAI + ^IMB = 900  (2)

Từ (1) và (2) suy ra ^MNQ > 900 => MQ là cạnh lớn nhất trong \(\Delta\)QMN => MN < MQ = BC

Vậy MN < BC.

10 tháng 8 2019

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\)

Ta co:\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge2\sqrt{\frac{1}{x}\cdot4x}-3x=4-3x\left(AM-GM\right)\)

Tuong tu:\(y+\frac{1}{y}=4-3y\)

Ta co:\(A\ge\left(4-3x\right)^2+\left(4-3y\right)^2\)

\(=16-24x+9x^2+16-24y+9y^2\)

\(=32-24\left(x+y\right)+9\left(x^2+y^2\right)\)

Ap dung bat dang thuc phu:\(\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Khi do,ta co:

\(A\ge32-24\cdot1+9\cdot\frac{1}{2}=\frac{25}{2}\)

Dau bang xay ra khi va chi khi:\(x=y=\frac{1}{2}\)

P/S:E ko chac dau ah,e ms lm quen vs no thoi
 

10 tháng 8 2019

\(VT\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(4\left(x+y\right)+\frac{4}{x+y}-3\left(x+y\right)\right)^2}{2}\)

\(\ge\frac{\left(2.4-3.1\right)^2}{2}=\frac{25}{2}\)

đẳng thức xảy ra khi x = y = 1/2

https://olm.vn/hoi-dap/detail/96788252350.html

Tham khảo ở link này (mình gửi cho)

Hoc tốt!!!!!!!!!!!!

9 tháng 8 2019

\(\left(a^2+b^2\right)^2\ge\left(\frac{a+b}{2}\right)^2\)

\(\Rightarrow a^2+b^2\ge\frac{a+b}{2}\)

\(\Rightarrow a^2+b^2-\frac{a+b}{2}\ge0\forall a,b\)

Dấu"=" <=> \(a=b=0\)

Nè bn: http://123doc.org/timkiem/%C4%91%E1%BB%81+thi+v%C3%A0o+l%E1%BB%9Bp+ch%E1%BB%8Dn+kh%E1%BB%91i+8+m%C3%B4n+to%C3%A1n.htm

Hội con 🐄 chúc bạn học tốt!!!

"http://123doc.org/document/2919098-de-hsg-toan-8-h-tam-dao-2015-144.htm"

Đề thi của huyện tui năm 2015

9 tháng 8 2019

\(=\left(3x+y\right)^2+\left(x-3y\right)^2-10\left(x^2-y^2\right)-20\left(y^2-4\right)\)

\(=9x^2+y^2+6xy+x^2+9y^2-6xy-10x^2+10y^2-20y^2+40\)

\(=40\)(đpcm)

10 tháng 8 2019

Vậy cái 20y^2 đâu r bạn