Cho \(a,b,c>0\). Chứng minh rằng: \(\frac{a\cdot b}{c}+\frac{b\cdot c}{a}+\frac{c\cdot a}{b}\ge a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)a)x+y=60
<=>(x+y)^2=3600
<=>x^2+2xy+y^2=3600(1)
mà xy=35 nên 2xy=2.35=70
(1)<=>x^2+70+y^2=3600
<=>x^2+y^2=3530
<=>(x^2+y^2)^2=12460900
<=>x^4+2x^2.y^2+y^4=12460900(2)
mà xy=35 nên 2x.x.y.y=2450
(2)<=>x^4+y^4=123458450
b)x+y=1
<=>(x+y)^3=1
<=>x^3+3x^2y+3xy^2+y^3=1
<=>x^3+y^3+3xy(x+y)=1
<=>x^3+y^3+3xy=1
=>M=1
x+y=1
<=>x^2+2xy+y^2=1(1)
B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)
=x^3+y^3+3xy(x^2+2xy+y^2)
=M.1=1(từ(1)
c)
x-y=1
<=>(x-y)^3=1
<=>x^3-3x^2y+3xy^2-y^3=1
<=>x^3-y^3-3xy(x-y)=1
<=>x^3-y^3-3xy=1
=>N=1
tìm số nguyên m,n,k nguyên sao cho khi phân tích đa thức (x-10)(x-k)+1 thành nhân tử được (x+m)(x+n)
\(A=x\left(2x+1\right)-4xy+y\left(2y-1\right)+2000.\)
\(2x^2+x-4xy+2y^2-y+2000\)
\(2\left(x-y\right)^2+x-y+2000=2.25+5+2000\)
\(2x^2\left(x-1\right)+3x^2-3x-2x+2.\)
\(2x^2\left(x-1\right)+3x\left(x-1\right)-2\left(x-1\right)\)
\(\left(x-1\right)\left(2x^2+3x-2\right)\)
\(2\left(x-1\right)\left(x^2+\frac{3}{2}x-2\right)=2\left(x-1\right)\left\{\left(x^2+\frac{2x.3}{4}+\frac{9}{16}\right)-\left(2+\frac{9}{16}\right)\right\}\)
\(2\left(x-1\right)\left\{\left(x+\frac{3}{4}\right)^2-\left(2+\frac{9}{16}\right)\right\}=2\left(x-1\right)\left\{\left(x+\frac{3}{4}-2-\frac{9}{16}\right)\left(x+\frac{3}{4}+2+\frac{9}{16}\right)\right\}\)
\(=2x^3+4x^2-3x^2-6x+x+2\)
= \(2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\)
= \(\left(x+2\right)\left(2x^2-3x+1\right)\)
= \(\left(x+2\right)\left(2x^2-x-2x+1\right)\)
= \(\left(x+2\right)\left(2x\left(x-1\right)-\left(x-1\right)\right)\)
= \(\left(x+2\right)\left(x-1\right)\left(2x-1\right)\)
\(x^2+\frac{x}{2013}-\frac{2014}{2013}\)
\(x^2+\frac{2x}{4026}+\frac{1}{4026^2}-\left(\frac{2014}{2013}+\frac{1}{4026^2}\right)\)
\(\left(x+\frac{1}{4026}\right)^2-\left(\frac{2014}{2013}+\frac{1}{4026^2}\right)\)
\(\left(x+\frac{1}{4026}-\frac{2014}{2013}-\frac{1}{4026^2}\right)\left(x+\frac{1}{4026}+\frac{2014}{2013}+\frac{1}{4026^2}\right)\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
tương tự cộng theo vế rút gọn ta có đpcm